| [1] | LANDRY J S, MATTHEWS H D. Non-deforestation fire vs fossil fuel combustion: the source of CO2 emissions affects the global carbon cycle and climate responses[J]. Biogeosciences, 2016, 13:2137-2149. doi: 10.5194/bg-13-2137-2016    
																																					URL
 | 
																													
																						| [2] | STOCKER T F, QIN D H, PLATTNER G K, et al. Summary for Policymakers[M]. Cambridge, United Kingdom: Cambridge University Press, 2013. | 
																													
																						| [3] | IPCC. Summary for policymakers∥Stocker T F,Qin D,Plattner G K. Climate Change 2013:the Physical Science Basis. Contribution of Working Group to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 2013. | 
																													
																						| [4] | AINSWORTH E A, DAVEY P A, HYMUS G J, et al. Is stimulation of leaf photosynthesis by elevated carbon dioxide concentration maintained in the long term A test with Lolium perenne grown for 10 years at two nitrogen fertilization levels under free air CO2 enrichment (FACE)[J]. Plant cell & environment, 2003, 26(5):705-714. | 
																													
																						| [5] | GUTIérrez D, GutiÉrrez E, PéRez P, et al. Acclimation to future atmospheric CO2 levels increases photochemical efficiency and mitigates photochemistry inhibition by warm temperatures in wheat under field chambers[J]. Physiologia plantarum, 2009, 137(1):86-100. doi: 10.1111/j.1399-3054.2009.01256.x    
																																					URL
 | 
																													
																						| [6] | REICH P B, HUNGATE B A, LUO Y Q. Carbon-nitrogen interaction in terrestrial ecosystems in response to rising atmospheric carbon dioxide[J]. Annual review ecology, evolution, and systematics, 2006, 37:611-636. doi: 10.1146/annurev.ecolsys.37.091305.110039    
																																					URL
 | 
																													
																						| [7] | BLOOM A J, ASENSIO J S, RANDALL L, et al. CO2 enrichment inhibits shoot nitrate assimilation in C3 but not C4 plants and slows growth under nitrate in C3 plants[J]. Ecology, 2012, 93(2):355-367. doi: 10.1890/11-0485.1    
																																					URL
 | 
																													
																						| [8] | AINSWORTH E A, LONG S P. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2[J]. New phytologist, 2005, 165:351-372. doi: 10.1111/j.1469-8137.2004.01224.x    
																																					URL
 | 
																													
																						| [9] | GALLOWAY J N, TOWNSEND A R, ERISMAN J W, et al. Transformation of the nitrogen cycle: recent trends, questions and potential solutions[J]. Science, 2008, 320:889-892. doi: 10.1126/science.1136674    
																																					URL
 | 
																													
																						| [10] | 牛晓光, 杨荣全, 李明, 等. 大气CO2浓度升高与氮肥互作对玉米光合特性及产量的影响[J]. 中国生态农业学报(中英文), 2020, 28(2):255-264. | 
																													
																						| [11] | 夏晔, 胡正华, 刘超, 等. 不同大气CO2浓度升高与施氮互作对冬小麦光合与生长的影响[J]. 农业现代化研究, 2019, 40(2):333-341. | 
																													
																						| [12] | 张凯, 张勃, 王润元. CO2浓度升高对半干旱区春小麦光合作用及水分生理生态特性的影响[J]. 生态环境学报, 2021, 30(2):223-232. | 
																													
																						| [13] | 王晓, 韦小丽, 吴高殷, 等. CO2浓度升高条件下不同氮素供应对闽楠幼苗光合特性及生长的影响[J]. 林业科学, 2021, 57(4):173-181. | 
																													
																						| [14] | 郭芳芸, 哈蓉, 马亚平, 等. CO2浓度升高对宁夏枸杞苗木光合特性及生物量分配影响[J]. 西北植物学报, 2019, 39(2):302-309. | 
																													
																						| [15] | 赵光影, 刘景双, 窦晶鑫, 等. CO2浓度倍增对湿地小叶章生理特性的影响[J]. 环境科学研究, 2008, 21(5):134-138. | 
																													
																						| [16] | 徐明仪. 模拟大气CO2浓度升高对小叶章光合特性的影响及分子机制[D]. 哈尔滨: 东北农业大学, 2015. | 
																													
																						| [17] | 倪红伟. 三江平原湿地植物多样性研究[D]. 长春: 东北师范大学, 2001. | 
																													
																						| [18] | 邢军会, 倪红伟, 王建波. 二氧化碳浓度升高与氮沉降对三江平原小叶章群落生物量累积及其分配格局的影响[J]. 中国农学通报, 2011, 27(13):49-54. | 
																													
																						| [19] | REY A, JARVIS P G. Long-term photosynthetic acclimation to increased atmospheric CO2concentration in young birch (Betula pendula) trees[J]. Tree physiology, 1998, 18(7):441-450. doi: 10.1093/treephys/18.7.441    
																																					URL
 | 
																													
																						| [20] | LIU J X, ZHANG D Q, ZHOU G Y, et al. Changes in leaf nutrient traits and photosynthesis of four tree species: effects of elevated CO2, N fertilization and canopy positions[J]. Journal of plant ecology, 2012, 5(4):376-390. doi: 10.1093/jpe/rts006    
																																					URL
 | 
																													
																						| [21] | SEFCIK L T, ZAK D R, ELLSWORTH D S. Seedling survival in a northern temperate forest understory is increased by elevated atmospheric carbon dioxide and atmospheric nitrogen deposition[J]. Global change biology, 2007, 13:132-146. doi: 10.1111/j.1365-2486.2006.01293.x    
																																					URL
 | 
																													
																						| [22] | HYMUS G J, BAKER N R, LONG S P. Growth in elevated CO2 can both increase and decrease photochemistry and photoinhibition of photosynthesis in a predictable manner Dactylis glomerata grown in two levels of nitrogen nutrition[J]. Plant physiology, 2001, 127:1204-1211. doi: 10.1104/pp.010248    
																																					URL
 | 
																													
																						| [23] | AINSWORTH E A, ROGERS A, BLUM H, et al. Variation in acclimation of photosynthesis in Trifolium repens after eight years of exposure to free air CO2 enrichment (FACE)[J]. Journal of experimental botany, 2003, 54 (393):2769-2774. doi: 10.1093/jxb/erg309    
																																					URL
 | 
																													
																						| [24] | DANIEL P R, PIERRE T. Leaf carbohydrate controls over Arabidopsis growth and response to elevated CO2 - An experimentally based model[J]. New phytologist, 2006, 172(3):500-513. doi: 10.1111/j.1469-8137.2006.01848.x    
																																					URL
 | 
																													
																						| [25] | LASTDRAGER J, HANSON J, SMEEKENS S. Sugar signals and the control of plant growth and development[J]. Journal of Experimental Botany, 2014, 65(3): 799-807. doi: 10.1093/jxb/ert474    
																																					URL
 | 
																													
																						| [26] | LUDEWIG F, SONNEWALD U, KANDER F, et al. The role of transient starch in acclimation to elevated atmospheric CO2[J]. FEBS letters, 1998, 429(2):147-151. doi: 10.1016/S0014-5793(98)00580-8    
																																					URL
 | 
																													
																						| [27] | 廖建雄, 王根轩. CO2和温度升高及干早对小麦叶片化学成分的影响[J]. 植物生态学报, 2000, 24(6):744-747. | 
																													
																						| [28] | EI KohenA, MOUSSEAU M. Interactive effects of elevated CO2 and mineral nutrition on growth and CO2 exchange of sweet chestnut seedlings(Castanea sativa)[J]. Tree physiology, 1994, 14:679-690. pmid: 14967640
 | 
																													
																						| [29] | NIE G Y, HENDRIX D L, LONG S P, et al. The effect of elevated CO2 concentration throughout the growth of a wheat crop in the field on the expression of photosynthetic genes in relation to carbohydrate accumulation[J]. Plant physiology, 1995, 108:92 (Suppl). | 
																													
																						| [30] | LONG S P, ZHU X G, NAIDU S L, et al. Can improvement in photosynthesis increase crop yield[J]. Plant, Cell and Environment, 2006, 29:315-330. doi: 10.1111/j.1365-3040.2005.01493.x    
																																					URL
 | 
																													
																						| [31] | TAKATANI N, ITO T, KIBA T, et al. Effects of high CO2 on growth and metabolism of Arabidopsis seedlings during growth with a constantly limited supply of nitrogen[J]. Plant and cell physiology, 2014, 55(2):281-292. doi: 10.1093/pcp/pct186    
																																					URL
 | 
																													
																						| [32] | PAUL M J, Foyer C H. Sink regulation of photosynthesis[J]. Journal of Experimental Botany, 2001, 52(360):1383-1400. doi: 10.1093/jexbot/52.360.1383    
																																					URL
 | 
																													
																						| [33] | PAUL M J, PELLNY T K. Carbon metabolite feedback regulation of leaf photosynthesis and development[J]. Journal of experimental botany, 2003, 54:539-547. doi: 10.1093/jxb/erg052    
																																					URL
 |