中国农学通报 ›› 2022, Vol. 38 ›› Issue (25): 108-113.doi: 10.11924/j.issn.1000-6850.casb2021-0859
范雅琦1, 王亚南1, 霍瑞轩1, 姚涛1, 杨珍平1, 乔月静1(), 郭来春2(
)
收稿日期:
2021-01-02
修回日期:
2021-11-22
出版日期:
2022-09-05
发布日期:
2022-08-26
通讯作者:
乔月静,郭来春
基金资助:
FAN Yaqi1, WANG Yanan1, HUO Ruixuan1, YAO Tao1, YANG Zhenping1, QIAO Yuejing1(), GUO Laichun2(
)
Received:
2021-01-02
Revised:
2021-11-22
Online:
2022-09-05
Published:
2022-08-26
Contact:
QIAO Yuejing,GUO Laichun
摘要:
作物轮作种植在中国应用历史悠久,而针对不同地区不同栽培目的的轮作模式研究一直处于探索中。笔者以轮作在土壤生态学方面对土壤的改良作用着手,分析国内外学者关于多种轮作模式下土壤线虫与微生物群落的相关研究,讨论轮作模式下土壤理化性状对两者的影响以及在团聚体中微生物和线虫群落的关系。从宏观及微观空间尺度下分析两者在土壤生态系统食物网中的相互作用,根据其互作效应探究微生物、线虫对土壤环境的指示作用,以此来达到合理轮作、培肥土壤、作物可持续稳产高产的目的,使得农田土壤状况向着更有利于作物生长发育的方向发展。
中图分类号:
范雅琦, 王亚南, 霍瑞轩, 姚涛, 杨珍平, 乔月静, 郭来春. 轮作模式下土壤微生物与线虫群落的互作研究现状[J]. 中国农学通报, 2022, 38(25): 108-113.
FAN Yaqi, WANG Yanan, HUO Ruixuan, YAO Tao, YANG Zhenping, QIAO Yuejing, GUO Laichun. Research Status of Interaction Between Soil Microorganisms and Nematode Communities Under Rotation Mode[J]. Chinese Agricultural Science Bulletin, 2022, 38(25): 108-113.
[1] | 柴继宽. 轮作和连作对燕麦产量、品质、主要病虫害及土壤肥力的影响[D]. 兰州: 甘肃农业大学, 2012. |
[2] | LIU Z X, LIU J J, YU Z H, et al. Long-term continuous cropping of soybean is comparable to crop rotation in mediating microbial abundance, diversity and community composition[J]. Soil & tillage research, 2020, 197:104503. |
[3] | 尹国丽, 李亚娟, 张振粉, 等. 不同草田轮作模式土壤养分及细菌群落组成特征[J]. 生态学报, 2020, 40(5):1542-1550. |
[4] | 吴凤芝, 朱维伟. 不同轮作模式对黄瓜幼苗生长及土壤化学性质的影响[J]. 东北农业大学学报, 2020, 51(5):1-9. |
[5] | 张成君, 师尚礼, 康文娟, 等. 不同轮作模式土壤酶活性特征及与化学性质的关系[J]. 中国草地学报, 2020, 42(5):92-102. |
[6] | 杨万勤, 宋光煜, 韩玉萍. 土壤生态学的理论体系及其研究领域[J]. 生态学杂志, 2000(4):53-56. |
[7] | 袁仁文, 刘琳, 张蕊, 等. 植物根际分泌物与土壤微生物互作关系的机制研究进展[J]. 中国农学通报, 2020, 36(2):26-35. |
[8] | 金娜, 刘倩, 简恒. 植物寄生线虫生物防治研究新进展[J]. 中国生物防治学报, 2015, 31(5):789-800. |
[9] | 侯雪坤. 不同耕作方式下土壤耕层理化性状和生物学特性时空分布研究[D]. 大庆: 黑龙江八一农垦大学, 2011. |
[10] | 黄潇, 赵智勇, 蔡颖慧. 土壤微生物群落结构研究方法[J]. 科技与创新, 2020(12):36-37. |
[11] | 马琳. 土壤微生物多样性影响因素及研究方法综述[J]. 乡村科技, 2019(33):112-113. |
[12] | 谭益民, 何苑皞, 郭文平. 基于分子技术的土壤微生物多样性研究进展[J]. 中南林业科技大学学报, 2014, 34(10):1-9. |
[13] | 孙倩, 吴宏亮, 陈阜, 等. 不同作物轮作对谷田土壤酶活性和土壤细菌群落的影响[J]. 生态环境学报, 2020, 29(12):2385-2393. |
[14] | ZHANG L C, LI J, ZHANG M Q. Effect of rice-rice-rape rotation on physicochemical property and bacterial community of rhizosphere soil[J]. Oil crop science, 2020, 5(3):149-155. |
[15] | 陈丹梅, 段玉琪, 杨宇虹, 等. 轮作模式对植烟土壤酶活性及真菌群落的影响[J]. 生态学报, 2016, 36(8):2373-2381. |
[16] | 刘杭. 黑土区典型作物轮作和连作对土壤微生物群落结构的影响[D]. 长春: 中国科学院东北地理与农业生态研究所, 2019. |
[17] | REN T, BU R Y, LIAO S P, et al. Differences in soil nitrogen transformation and the related seed yield of winter oilseed rape (Brassica napus L.) under paddy-upland and continuous upland rotations[J]. Soil & tillage research, 2019, 192:206-214. |
[18] | GONG L D, WANG J W, ABBAS T, et al. Immobilization of exchangeable Cd in soil using mixed amendment and its effect on soil microbial communities under paddy upland rotation system[J]. Chemosphere, 2021, 262:127828. |
[19] | 陈余平, 郑华章, 周飞, 等. 轮作和有机肥对滨海灰潮土土壤微生物种群的影响[J]. 浙江农业科学, 2020, 61(10):2159-2162. |
[20] | 李秀花, 高波, 马娟, 等. 休闲与轮作对燕麦孢囊线虫种群动态的影响[J]. 麦类作物学报, 2013, 33(5):1048-1053. |
[21] | FLOWER K C, HUBERLI D, COLLINS S J, et al. Progression of plant-parasitic nematodes and foliar and root diseases under no-tillage with different crop rotations[J]. Soil & tillage research, 2019, 191:18-28. |
[22] | 侯生英, 马麟, 张贵, 等. 不同轮作模式下小麦禾谷孢囊线虫的发生动态和种群密度[J]. 植物保护, 2017, 43(5):180-188. |
[23] | ZHANG Z W, LI Q, GAO B, et al. Immediate responses of soil nematode community to addition of multiple nutrients in a degraded grassland[J]. Plant and soil, 2020:1-14. |
[24] | 叶成龙, 刘婷, 张运龙, 等. 麦地土壤线虫群落结构对有机肥和秸秆还田的响应[J]. 土壤学报, 2013, 50(5):997-1005. |
[25] | 陈立杰, 朱艳, 刘彬, 等. 连作和轮作对大豆胞囊线虫群体数量及土壤线虫群落结构的影响[J]. 植物保护学报, 2007(4):347-352. |
[26] | 韩新华, 许艳丽, 潘凤娟, 等. 黑土区轮作系统大豆田土壤线虫种群结构研究[J]. 大豆科学, 2008(1):118-123. |
[27] | 霍娜, 黄菁华, 耿德洲, 等. 黄土高原半干旱区不同苜蓿-作物种植方式下土壤线虫群落组成及代谢足迹[J]. 应用生态学报, 2021, 32(5):1825-1834. |
[28] | ZHANG Z Y, ZHANG X K, JHAO J, et al. Tillage and rotation effects on community composition and metabolic footprints of soil nematodes in a black soil[J]. European journal of soil biology, 2015, 66:40-48. |
[29] | JABRO J D, ALLEN B L, RAND T, et al. Effect of previous crop roots on soil compaction in 2 yr rotations under a no-tillage system[J]. Land, 2021, 10(2):202. |
[30] | LIU L, WU L H, KNAUTH S, et al. Degradation of transgenic Bt -rice straw incorporated with two different paddy soils[J]. Journal of environmental management, 2019, 244:415-421. |
[31] | 剡斌. 胡麻轮作模式对农田土壤养分、生物特性及作物产量的影响[D]. 兰州: 甘肃农业大学, 2018. |
[32] | 谷景龙. 不同种植方式对土壤性状、玉米生长发育及产量的影响[D]. 哈尔滨: 东北农业大学,2019. |
[33] | HUMBERTO B, RUIS S J. Cover crop impacts on soil physical properties: A review[J]. Soil science society of America journal, 2020.84(5):1527-1576. |
[34] | 孙倩. 轮作模式对谷茬地作物根际土壤特性及微生物群落多样性的影响[D]. 银川: 宁夏大学,2019. |
[35] | 陈一民, 隋跃宇, 刘晓冰, 等. 两种施肥处理下不同有机质含量农田黑土微生物群落结构PLFA分析[J]. 土壤与作物, 2021, 10(1):91-98. |
[36] | PAN F J, HAN X Z, LI N, et al. Effect of organic amendment amount on soil nematode community structure and metabolic footprints in soybean phase of a soybean-maize rotation on Mollisols[J]. Pedosphere, 2020, 30(4):544-556. |
[37] | 郭金瑞, 宋振伟, 高洪军, 等. 玉米大豆长期轮作对土壤物理特性与水热特征的影响[J]. 大豆科学, 2017, 36(2):226-232. |
[38] | 范倩玉, 李晋, 刘振华, 等. 不同轮作模式对潮土土壤物理性状的影响[J]. 山西农业科学, 2020, 48(8):1267-1270. |
[39] | 董士刚. 轮作模式及小麦增密减氮对潮土理化性状及作物产量的影响[D]. 郑州: 河南农业大学, 2019. |
[40] | 王玲莉, 许桂玲, 冯跃华, 等. 不同冬种模式对土壤物理性质和后茬杂交水稻产量的影响[J]. 山地农业生物学报, 2020, 39(5):9-14. |
[41] | ZHOU Z J, CECILIA P, LARS E, et al. A 60-years old field experiment demonstrates the benefit of leys in the crop rotation[J]. Acta agriculturae scandinavica, section B- Soil & plant science, 2019, 69(1):36-42. |
[42] | SOKOLOWSKI A C, BARBARA P M, JAVIER D G, et al. Tillage and no-tillage effects on physical and chemical properties of an Argiaquoll soil under long-term crop rotation in Buenos Aires, Argentina[J]. International soil and water conservation research, 2020, 8(2):185-194. |
[43] | MTYOBILE M, MUZANGWA L, MNKENI P N S. Tillage and crop rotation effects on soil carbon and selected soil physical properties in a Haplic Cambisol in Eastern Cape, South Africa[J]. Soil and water research, 2020, 15(1):47-54. |
[44] | NASCENTE A S, STONE L F. Cover crops as affecting soil chemical and physical properties and development of upland rice and soybean cultivated in rotation[J]. Rice science, 2018, 25(6):340-349. |
[45] | 李杰. 不同作物轮作结合施肥对土壤性状的影响[D]. 呼和浩特: 内蒙古农业大学,2018. |
[46] | 刘珊廷. 木薯连作与轮作对土壤理化性状及微生物群落和产量的影响[D]. 南宁: 广西大学, 2020. |
[47] | MIKHA M M, HERGERT G W, QIAO X, et al. Soil chemical properties after 12 years of tillage and crop rotation[J]. Agronomy journal, 2020, 112(5):4395-4406. |
[48] | 李楠, 李强, 刘春光, 等. 粮-草轮作对吉林省西部盐渍化土壤的改良效果[J]. 东北农业科学, 2019, 44(5):38-42. |
[49] | 李凯. 连作与轮作对砂田西瓜土壤微生物学性状及化学性状的影响[D]. 银川: 宁夏大学, 2015. |
[50] | 刘婷, 叶成龙, 李勇, 等. 不同有机类肥料对小麦和水稻根际土壤线虫的影响[J]. 生态学报, 2015, 35(19):6259-6268. |
[51] | 苏兰茜, 白亭玉, 鱼欢, 等. 有机无机肥配施对菠萝蜜种植土壤线虫群落的影响[J]. 土壤学报, 2020, 57(6):1504-1513. |
[52] | 武均, 蔡立群, 齐鹏, 等. 不同耕作措施下旱作农田土壤团聚体中有机碳和全氮分布特征[J]. 中国生态农业学报, 2015, 23(3):276-284. |
[53] | 张志毅, 熊桂云, 吴茂前, 等. 有机培肥与耕作方式对稻麦轮作土壤团聚体和有机碳组分的影响[J]. 中国生态农业学报(中英文), 2020, 28(3):405-412. |
[54] | ZHU G Y, SHANGGUAN Z P, DENG L. Variations in soil aggregate stability due to land use changes from agricultural land on the Loess Plateau, China[J]. Catena, 2021, 200:105181. |
[55] | 胡旭凯, 陈居田, 朱利霞, 等. 干湿交替对土壤团聚体特征的影响[J]. 中国农业科技导报, 2021, 23(2):141-149. |
[56] | 罗友进, 陈霞, 胡佳羽, 等. 沼肥灌施配合机械深松对柑橘园土壤团聚体组成、有机质含量及矿化特征的影响[J]. 核农学报, 2021, 35(3):697-703. |
[57] | 刘骞, 许明月, 魏思雪, 等. 松嫩平原不同土地利用类型土壤团聚体分布及碳氮磷化学计量特征研究[J]. 东北农业大学学报, 2020, 51(12):32-40. |
[58] | JIANG Y J, LIU M Q, ZHANG J B, et al. Nematode grazing promotes bacterial community dynamics in soil at the aggregate level[J]. The ISME Journal: Multidisciplinary Journal of Microbial Ecology, 2017, 11(12):2705-2717. |
[59] | 何翠翠. 麦玉轮作有机无机肥料配施的土壤团聚体及微生物群落特征[D]. 北京: 中国农业科学院, 2017. |
[60] | ZOTARELLI L, ALVES B J R, URQUIAGA S, et al. Impact of tillage and crop rotation on light fraction and intra-aggregate soil organic matter in two Oxisols[J]. Soil & tillage research, 2007, 95(1):196-206. |
[61] | 王浩田, 姜超强, 蒋瑀霁, 等. 皖南沿江平原不同年限烟-稻轮作土壤团聚体组成与烤烟产质量的关系[J]. 土壤, 2020, 52(5):1057-1067. |
[62] | 刘勇军, 彭曙光, 肖艳松, 等. 湖南烟稻轮作区土壤团聚体稳定性及其与碳氮比的关系[J]. 中国烟草学报, 2020, 26(1):75-83. |
[63] | JIANG Y B, SUN B, JIN C, et al. Soil aggregate stratification of nematodes and microbial communities affects the metabolic quotient in an acid soil[J]. Soil biology and biochemistry, 2013, 60:1-9. |
[64] | WANG S Q, LI T X, ZHENG Z C. Response of soil aggregate-associated microbial and nematode communities to tea plantation age[J]. Catena, 2018, 171:475-484. |
[65] | 贾慧, 王晟强, 郑子成, 等. 植茶年限对土壤团聚体线虫群落结构的影响[J]. 生态学报, 2020, 40(6):2130-2140. |
[66] | 陈晓东, 吴景贵, 范围, 等. 有机物料对原生盐碱土微团聚体特征及稳定性的影响[J]. 水土保持学报, 2020, 34(2):201-207. |
[67] | 李明, 赵建宁, 秦洁, 等. 氮素添加对贝加尔针茅草原土壤团聚体微生物群落的影响[J]. 生态学报, 2021, 41(3):1127-1137. |
[68] | 耿德洲. 宁南山区人工植被恢复对土壤微生物和线虫群落的影响[D]. 杨凌: 西北农林科技大学, 2020. |
[69] | 任静. 微生物菌剂防治蔬菜根结线虫病的研究进展[J]. 农业技术与装备, 2020(9):147-148. |
[70] | 孔云. 施肥措施和秸秆还田对潮土农田土壤动物的影响[D]. 沈阳: 沈阳农业大学, 2018. |
[71] | 褚海燕, 王艳芬, 时玉, 等. 土壤微生物生物地理学研究现状与发展态势[J]. 中国科学院院刊, 2017, 32(6):585-592. |
[72] | JANINA M, DANIEL G, PATRICIA L, et al. Interactions between nitrogen availability, bacterial communities, and nematode indicators of soil food web function in response to organic amendments[J]. Applied soil ecology, 2021, 157:103767. |
[73] | LAZCANO C, DENISTON-SHEETS H M, STUBLER C, et al. Soil management induced shifts in nematode food webs within a Mediterranean vineyard in the Central Coast of California (USA)[J]. Applied soil ecology, 2021, 157:103756. |
[74] | 寇新昌. 免耕条件下黑土微食物网对外源秸秆碳输入的响应机制[D]. 长春: 东北师范大学, 2020. |
[75] | 陈云峰, 韩雪梅, 李钰飞, 等. 线虫区系分析指示土壤食物网结构和功能研究进展[J]. 生态学报, 2014, 34(5):1072-1084. |
[76] | 吴林坤, 林向民, 林文雄. 根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望[J]. 植物生态学报, 2014, 38(3):298-310. |
[77] | 邱虎森, 杨慎骄, 周新国. 不同茬口和施氮水平对南瓜根际细菌碳分解潜力的影响[J]. 土壤, 2021, 53(1):133-139. |
[78] | HAO L J, ZHANG Z C, HAO B H, et al. Arbuscular mycorrhizal fungi alter microbiome structure of rhizosphere soil to enhance maize tolerance to La[J]. Ecotoxicology and environmental safety, 2021, 212. |
[79] | WANG G M, CHEN J, ZHU Y Y. Distinct bacterial community compositions in the Populus rhizosphere under three types of organic matter input across different soil types[J]. Plant and soil, 2021. |
[80] | 苏燕, 李婕, 曹雪颖, 等. 水旱轮作模式下马铃薯根际土壤细菌群落多样性分析[J]. 南方农业学报, 2020, 51(10):2374-2382. |
[81] | 黄阔. 烟草根际微生物与根结线虫发生的关系及调控作用研究[D]. 重庆: 西南大学, 2020. |
[82] | 颜秀娟, 李明姝, 李楠, 等. 连作大豆田土壤线虫的种群结构和垂直分布[J]. 湖北农业科学, 2009, 48(2):335-337. |
[83] | 孙波, 蒋金江. 红壤团聚体中线虫和微生物群落的协同分布及其对土壤呼吸熵的影响[A].中国土壤学会第十二次全国会员代表大会暨第九届海峡两岸土壤肥料学术交流研讨会[C]. 成都, 2012:908-911. |
[1] | 黄浩, 谢晋, 袁文彬, 王初亮, 陈坤华, 曾繁东, 梁增发, 苏诏, 王维. 不同有机物料对烤烟根系特征及氮磷钾积累量的影响[J]. 中国农学通报, 2022, 38(8): 51-57. |
[2] | 秦乃群, 马巧云, 高敬伟, 杨璞, 蔡金兰, 郝迎春, 李艳梅, 冀洪策, 廖祥政. 沼渣施用对花生小麦轮作作物产量及土壤养分和重金属含量的影响[J]. 中国农学通报, 2022, 38(8): 58-63. |
[3] | 赵双梅, 刘宪斌, 李红梅, 董文彩, 沈健萍, 包金美, 梁芳, 鲁美. 云南哀牢山湿性常绿阔叶林土壤碳分布特征[J]. 中国农学通报, 2022, 38(8): 88-95. |
[4] | 徐翎清, 李佳佳, 常晓, 张云龙, 刘大丽. 土壤氮矿化相关机理的研究进展[J]. 中国农学通报, 2022, 38(34): 97-101. |
[5] | 王丽霞, 殷晓敏, 刘永霞, 连子豪, 王必尊, 何应对. 间作韭菜模式下番木瓜根区微生物群落变化特征[J]. 中国农学通报, 2022, 38(31): 66-76. |
[6] | 高琳琳, 王陈丝丝, 张宁, 胡含秀, 马友华. 石灰配施有机物料对稻麦轮作土壤镉影响研究[J]. 中国农学通报, 2022, 38(3): 81-86. |
[7] | 晁赢, 付钢锋, 阎祥慧, 杭中桥, 杨全刚, 王会, 潘红, 娄燕宏, 诸玉平. 有机肥对作物品质、土壤肥力及环境影响的研究进展[J]. 中国农学通报, 2022, 38(29): 103-107. |
[8] | 于台泽, 贾伟, 安晓慧, 金书秦, 魏雪, 李颖, 张丹. 轮作种植制度的生态经济效益分析及发展建议[J]. 中国农学通报, 2022, 38(26): 150-157. |
[9] | 赵文军, 薛开政, 杨继周, 胡保文, 付利波, 尹梅, 陈检锋, 王伟, 王志远, 王应学, 李延润, 陈华. 烤烟-绿肥轮作对烤烟产量和品质的影响[J]. 中国农学通报, 2022, 38(25): 8-15. |
[10] | 洪慈清, 孙语遥, 莫雯婧, 方云, 陈芳容, 桂芳泽, 关雄, 潘晓鸿. 茶叶浸取液制备的纳米银对土壤微生物的影响[J]. 中国农学通报, 2022, 38(23): 56-63. |
[11] | 刘娟, 梁俊梅, 段玉, 闫洪, 温晓亮, 王瑞珍, 李杉瑞, 李二珍, 仲生柱, 李彬. 有机硅土壤调理剂和功能肥对盐碱地的改良及向日葵产量的影响[J]. 中国农学通报, 2022, 38(23): 77-81. |
[12] | 张河庆, 吴婕, 韩帅, 席亚东, 李跃建, 梁根云. 4种周年轮作模式对耕作层土壤微生物的影响[J]. 中国农学通报, 2022, 38(20): 73-80. |
[13] | 杜倩, 李琳, 刘铁男, 梁素钰. 复合菌肥对盐渍土土壤微生物多样性的影响[J]. 中国农学通报, 2022, 38(2): 38-43. |
[14] | 张奇, 刘海涛, 田静, 姚莉, 王宏, 林超文. 耕作方式对成都平原稻麦轮作系统吸收累积镉的影响[J]. 中国农学通报, 2022, 38(19): 109-113. |
[15] | 曹彩红, 曹玲玲, 祝宁, 陈加和, 赵立群, 田雅楠, 张宝杰, 何秉青. 不同农业措施对草莓连作土壤状况的影响[J]. 中国农学通报, 2022, 38(18): 107-112. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||