 
 中国农学通报 ›› 2022, Vol. 38 ›› Issue (33): 145-151.doi: 10.11924/j.issn.1000-6850.casb2022-0687
所属专题: 生物技术
        
               		陆诗敏1,2( ), 李雅媛1,2,3, 刘翀1,2, 刘兴国1,2, 鲍旭腾1,2, 田昌凤1,2, 顾兆俊1,2, 周亮1,2, 吴凡1,2(
), 李雅媛1,2,3, 刘翀1,2, 刘兴国1,2, 鲍旭腾1,2, 田昌凤1,2, 顾兆俊1,2, 周亮1,2, 吴凡1,2( )
)
                  
        
        
        
        
    
收稿日期:2022-08-22
									
				
											修回日期:2022-09-30
									
				
									
				
											出版日期:2022-11-25
									
				
											发布日期:2022-11-22
									
			通讯作者:
					吴凡
							作者简介:陆诗敏,男,1982年出生,山东聊城人,副研究员,博士,研究方向:池塘生态工程与养殖废水处理技术。通信地址:200092 上海市杨浦区赤峰路63号 中国水产科学研究院渔业机械仪器研究所生态工程研究室,E-mail:基金资助:
        
               		LU Shimin1,2( ), LI Yayuan1,2,3, LIU Chong1,2, LIU Xingguo1,2, BAO Xuteng1,2, TIAN Changfeng1,2, GU Zhaojun1,2, ZHOU Liang1,2, WU Fan1,2(
), LI Yayuan1,2,3, LIU Chong1,2, LIU Xingguo1,2, BAO Xuteng1,2, TIAN Changfeng1,2, GU Zhaojun1,2, ZHOU Liang1,2, WU Fan1,2( )
)
			  
			
			
			
                
        
    
Received:2022-08-22
									
				
											Revised:2022-09-30
									
				
									
				
											Online:2022-11-25
									
				
											Published:2022-11-22
									
			Contact:
					WU Fan  			     					     	
							摘要:
氨氮是池塘养殖尾水治理过程中需着重考虑的一种污染物,池塘养殖环境氨氮氧化去除主要依赖氨氧化细菌、氨氧化古菌和厌氧氨氧化菌。本研究介绍了在自然界中已发现的几种氨氧化菌的氮素代谢机理,并结合池塘生态系统特征,着重从温度、pH、溶解氧、附着基质和光照角度,阐释氨氧化菌对池塘养殖水体的生态调控机制。基于氨氧化菌附着生活习性,现已研发出多种异位池塘养殖水质净化技术,在一定程度上,这些技术能发挥净水效果,但普遍存在占地面积大,造价高、效率低等问题。目前,中国池塘养殖水体处理领域,在氨氧化微生物菌剂和高效微生物反应器应用及研发方面比较薄弱。建议未来强化池塘低温高效氨氧化菌株筛选和富集培养研究,促进结构紧凑型水处理微生物反应器研发,丰富淡水池塘养殖尾水氨氮去除手段。
中图分类号:
陆诗敏, 李雅媛, 刘翀, 刘兴国, 鲍旭腾, 田昌凤, 顾兆俊, 周亮, 吴凡. 氨氧化菌及其在中国池塘养殖水质调控过程中的应用[J]. 中国农学通报, 2022, 38(33): 145-151.
LU Shimin, LI Yayuan, LIU Chong, LIU Xingguo, BAO Xuteng, TIAN Changfeng, GU Zhaojun, ZHOU Liang, WU Fan. Ammonia-oxidizing Microorganisms and Their Application in Water Quality Control of Pond Aquaculture in China[J]. Chinese Agricultural Science Bulletin, 2022, 38(33): 145-151.
 
												
												 
														 
												
												 
														| [1] | 农业农村部渔业渔政管理局. 2021中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2019:1-182 | 
| [2] | 陶冶, 朱健, 李冰, 等. 基于氮、磷收支的人工湿地-池塘循环水养殖系统净化效果评价[J]. 中国海洋大学学报:自然科学版, 2021, 51(2):36-45. | 
| [3] | ACKEFORS H, ENELL M. The release of nutrients and organic matter from aquaculture systems in Nordic countries[J]. Journal of applied ichthyology, 1994, 10(4):225-241. doi: 10.1111/j.1439-0426.1994.tb00163.x URL | 
| [4] | 刘兴国. 池塘养殖污染与生态工程化调控技术研究[D]. 南京: 南京农业大学, 2011. | 
| [5] | LU S, LIAO M, XIE C, et al.  Seasonal dynamics of ammonia-oxidizing microorganisms in freshwater aquaculture ponds[J]. Annals of microbiology, 2015, 65(2):651-657. doi: 10.1007/s13213-014-0903-2 URL | 
| [6] | ZHAO M, AWEYA J J, FENG Q, et al.  Ammonia stress affects the structure and function of hemocyanin in Penaeus vannamei[J]. Ecotoxicology and environmental safety, 2022, 241:113827. doi: 10.1016/j.ecoenv.2022.113827 URL | 
| [7] | RANDALL D J, TSUI T K N. Ammonia toxicity in fish[J]. Marine pollution bulletin, 2002, 45(1-12):17-23. pmid: 12398363 | 
| [8] | AL-AJEEL S, SPASOV E, SAUDER L A, et al.  Ammonia-oxidizing archaea and complete ammonia-oxidizing bacteria in water treatment systems[J]. water research X, 2022, 15:100131. doi: 10.1016/j.wroa.2022.100131 URL | 
| [9] | MARTENS-HABBENA W, BERUBE P M, URAKAWA H, et al.  Ammonia oxidation kinetics determine niche separation of nitrifying archaea and bacteria[J]. Nature, 2009, 461(7266): 976-979. doi: 10.1038/nature08465 URL | 
| [10] | WU P, CHEN J, GARLAPATI V K, et al.  Novel insights into anammox-based processes: a critical review[J]. Chemical engineering journal, 2022, 444:136534. doi: 10.1016/j.cej.2022.136534 URL | 
| [11] | 贺纪正, 张丽梅. 氨氧化微生物生态学与氮循环研究进展[J]. 生态学报, 2009, 29(1):406-415. | 
| [12] | MULDER A, VAN DE GRAAF A A, ROBERTSON L A, et al.  Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor[J]. FEMS microbiology ecology, 1995, 16(3):177-183. doi: 10.1111/j.1574-6941.1995.tb00281.x URL | 
| [13] | LU S, LIU X, LIU C, et al.  A Review of ammonia-oxidizing archaea and anaerobic ammonia-oxidizing bacteria in the aquaculture pond environment in China[J]. Frontiers in microbiology, 2021, 12:775794. doi: 10.3389/fmicb.2021.775794 URL | 
| [14] | SHEN L, WU H, GAO Z, et al.  Evidence for anaerobic ammonium oxidation process in freshwater sediments of aquaculture ponds[J]. Environmental science and pollution research, 2016, 23(2):1344-1352. doi: 10.1007/s11356-015-5356-z URL | 
| [15] | KÖNNEKE M, BERNHARD A E, DE LA TORRE J R, et al.  Isolation of an autotrophic ammonia-oxidizing marine archaeon[J]. Nature, 2005, 437(7058):543-546. doi: 10.1038/nature03911 URL | 
| [16] | LEININGER S, URICH T, SCHLOTER M, et al.  Archaea predominate among ammonia-oxidizing prokaryotes in soils[J]. Nature, 2006, 442(7104):806-809. doi: 10.1038/nature04983 URL | 
| [17] | LU S, LIU X, LIU C, et al.  Review of ammonia-oxidizing bacteria and archaea in freshwater ponds[J]. Reviews in environmental science and bio/technology, 2019, 18(1):1-10. doi: 10.1007/s11157-018-9486-x URL | 
| [18] | DAIMS H, LEBEDEVA E V, PJEVAC P, et al.  Complete nitrification by Nitrospira bacteria[J]. Nature, 2015, 528(7583):504-509. doi: 10.1038/nature16461 URL | 
| [19] | VAN KESSEL M A H J, SPETH D R, ALBERTSEN M, et al.  Complete nitrification by a single microorganism[J]. Nature, 2015, 528(7583):555-559. doi: 10.1038/nature16459 URL | 
| [20] | TAN C, YIN C, LI W, et al. Comammox Nitrospira play a minor role in N2O emissions from an alkaline arable soil[J]. Soil biology & biochemistry, 2022,171,108720. | 
| [21] | HE S, ZHAO Z, TIAN Z, et al.  Comammox bacteria predominate among ammonia-oxidizing microorganisms in municipal but not in refinery wastewater treatment plants[J]. Journal of environmental management, 2022, 316:115271. doi: 10.1016/j.jenvman.2022.115271 URL | 
| [22] | ZHAO Y, WANG J, LIU Z, et al. Biofilm: A strategy for the dominance of comammox Nitrospira[J]. Journal of cleaner production, 2022:132361. | 
| [23] | PREENA P G, REJISH KUMAR V J, SINGH I S B. Nitrification and denitrification in recirculating aquaculture systems: the processes and players[J]. Reviews in aquaculture, 2021, 13(4):2053-2075. doi: 10.1111/raq.12558 URL | 
| [24] | TORNO J, EINWÄCHTER V, SCHROEDER J P, et al.  Nitrate has a low impact on performance parameters and health status of on-growing European sea bass (Dicentrarchus labrax) reared in RAS[J]. Aquaculture, 2018, 489:21-27. doi: 10.1016/j.aquaculture.2018.01.043 URL | 
| [25] | 宋协法, 杨晓晗, 黄志涛. 硝酸盐对鱼类毒性研究进展[J]. 中国海洋大学学报:自然科学版, 2019, 49(9):34-41. | 
| [26] | YU J, WANG Y, XIAO Y, et al.  Effects of chronic nitrate exposure on the intestinal morphology, immune status, barrier function, and microbiota of juvenile turbot (Scophthalmus maximus)[J]. Ecotoxicology and environmental safety, 2021, 207:111287. doi: 10.1016/j.ecoenv.2020.111287 URL | 
| [27] | ZHU G, WANG X, WANG S, et al.  Towards a more labor-saving way in microbial ammonium oxidation: a review on complete ammonia oxidization (comammox)[J]. Science of the total environment, 2022, 829:154590. doi: 10.1016/j.scitotenv.2022.154590 URL | 
| [28] | GROENEWEG J, SELLNER B, TAPPE W. Ammonia oxidation in Nitrosomonas at NH3 concentrations near Km: effects of pH and temperature[J]. Water research, 1994, 28(12):2561-2566. doi: 10.1016/0043-1354(94)90074-4 URL | 
| [29] | ZHANG J, MIAO Y, ZHANG Q, et al.  Mechanism of stable sewage nitrogen removal in a partial nitrification-anammox biofilm system at low temperatures: microbial community and EPS analysis[J]. Bioresource technology, 2020, 297:122459. doi: 10.1016/j.biortech.2019.122459 URL | 
| [30] | LU S, LIAO M, XIE C, et al.  Removing ammonium from aquaculture ponds using suspended biocarrier-immobilized ammonia-oxidizing microorganisms[J]. Annals of microbiology, 2015, 65(4):2041-2046. doi: 10.1007/s13213-015-1042-0 URL | 
| [31] | STAHL D A, DE LA TORRE J R.  Physiology and diversity of ammonia-oxidizing archaea[J]. Annual review of microbiology, 2012, 66:83-101. doi: 10.1146/annurev-micro-092611-150128 pmid: 22994489 | 
| [32] | MA B, WANG S, CAO S, et al.  Biological nitrogen removal from sewage via anammox: Recent advances[J]. Bioresource technology, 2016, 200:981-990. doi: 10.1016/j.biortech.2015.10.074 pmid: 26586538 | 
| [33] | ISAKA K, DATE Y, KIMURA Y, et al.  Nitrogen removal performance using anaerobic ammonium oxidation at low temperatures[J]. FEMS microbiology letters, 2008, 282(1):32-38. doi: 10.1111/j.1574-6968.2008.01095.x pmid: 18355289 | 
| [34] | EMERSON K, RUSSO R C, LUND R E, et al.  Aqueous ammonia equilibrium calculations: effect of pH and temperature[J]. Journal of the fisheries board of Canada, 1975, 32(12):2379-2383. doi: 10.1139/f75-274 URL | 
| [35] | HE J Z, HU H W, ZHANG L M. Current insights into the autotrophic thaumarchaeal ammonia oxidation in acidic soils[J]. Soil biology and biochemistry, 2012, 55:146-154. doi: 10.1016/j.soilbio.2012.06.006 URL | 
| [36] | WURTS W, DURBOROW R. Interactions of pH, carbon dioxide, alkalinity and hardness in fish ponds[J]. Southern regional aquaculture centre, 1992, 464:1-3. | 
| [37] | FRENCH E, KOZLOWSKI J A, MUKHERJEE M, et al.  Ecophysiological characterization of ammonia-oxidizing archaea and bacteria from freshwater[J]. Applied and environmental microbiology, 2012, 78(16):5773-5780. doi: 10.1128/AEM.00432-12 pmid: 22685142 | 
| [38] | OSHIKI M, SATOH H, OKABE S. Ecology and physiology of anaerobic ammonium oxidizing bacteria[J]. Environmental microbiology, 2016, 18(9):2784-2796. doi: 10.1111/1462-2920.13134 pmid: 26616750 | 
| [39] | DENG M, HOU J, SONG K, et al.  Community metagenomic assembly reveals microbes that contribute to the vertical stratification of nitrogen cycling in an aquaculture pond[J]. Aquaculture, 2020, 520:734911. doi: 10.1016/j.aquaculture.2019.734911 URL | 
| [40] | AUGUET J C, TRIADO-MARGARIT X, NOMOKONOVA N, et al.  Vertical segregation and phylogenetic characterization of ammonia-oxidizing Archaea in a deep oligotrophic lake[J]. The ISME journal, 2012, 6(9):1786-1797. doi: 10.1038/ismej.2012.33 URL | 
| [41] | SOLIMAN M, ELDYASTI A. Ammonia-oxidizing bacteria (AOB): Opportunities and applications-a review[J]. Reviews in environmental science and bio/technology, 2018, 17(2):285-321. doi: 10.1007/s11157-018-9463-4 URL | 
| [42] | 邓宇, 杨东海, 陈慧珍, 等. 生物载体在污水处理中的研究进展[J]. 环境科学与管理, 2022, 47(4):107-112. | 
| [43] | 陆诗敏. 淡水养殖池塘环境中氨氧化微生物的研究[D]. 武汉: 华中农业大学, 2014. | 
| [44] | LU S, LIU X, LIU C, et al.  Influence of photoinhibition on nitrification by ammonia-oxidizing microorganisms in aquatic ecosystems[J]. Reviews in environmental science and bio/technology, 2020, 19(3):531-542. doi: 10.1007/s11157-020-09540-2 URL | 
| [45] | LIU Y, NGO H H, GUO W, et al.  Autotrophic nitrogen removal in membrane-aerated biofilms: Archaeal ammonia oxidation versus bacterial ammonia oxidation[J]. Chemical engineering journal, 2016, 302:535-544. doi: 10.1016/j.cej.2016.05.078 URL | 
| [46] | LU J, ZHANG Y, WU J, et al.  Nitrogen removal in recirculating aquaculture water with high dissolved oxygen conditions using the simultaneous partial nitrification, anammox and denitrification system[J]. Bioresource technology, 2020, 305:123037. doi: 10.1016/j.biortech.2020.123037 URL | 
| [47] | GUERRERO M A, JONES R D. Photoinhibition of marine nitrifying bacteria. I. Wavelength-dependent response[J]. Marine ecology progress series, 1996, 141:183-192. doi: 10.3354/meps141183 URL | 
| [48] | WU D, CHENG M, ZHAO S, et al. Algal growth enhances light-mediated limitation of bacterial nitrification in an aquaculture system[J]. Water, air, & soil pollution, 2020, 231(2):1-9. | 
| [49] | LIU X G, SHAO Z, CHENG G, et al.  Ecological engineering in pond aquaculture:a review from the whole-process perspective in China[J]. Reviews in aquaculture, 2021, 13(2):1060-1076. doi: 10.1111/raq.12512 URL | 
| [50] | 刘梅, 原居林, 倪蒙, 等. “三池两坝”多级组合工艺对内陆池塘养殖尾水的处理[J]. 环境工程技术学报, 2021, 11(1):97-106. | 
| [51] | 黄海平. 水蕹菜浮床在精养鱼池中的应用效果研究[D]. 武汉: 华中农业大学, 2012. | 
| [1] | 连晓倩, 陶长铸, 郭昊澜, 李娜娜, 曹越, 吴鹏飞. 光照对芦苇生物生产力及光合能力的影响[J]. 中国农学通报, 2022, 38(20): 47-52. | 
| [2] | 王贵平, 薛晓敏, 赵红强, 陈汝, 韩雪平, 王金政. ‘富士’苹果不套袋与套袋密度对树体光合特性的影响[J]. 中国农学通报, 2022, 38(13): 54-59. | 
| [3] | 刘晓峰, 查道喜, 朱启法, 徐方正, 陈洋, 张广雨, 王学瑛, 薛琳, 许立峰, 张忠锋, 徐海清, 张洪博. 光照诱导太子参叶片黄化的机制[J]. 中国农学通报, 2022, 38(1): 68-74. | 
| [4] | 刘炜, 周国勤, 裴雪莹, 茆健强, 陈树桥, 张雷鸣, 石晓兰. 运输密度对兴凯湖翘嘴鲌水箱水质的影响[J]. 中国农学通报, 2021, 37(35): 124-130. | 
| [5] | 高怀骏, 陆庆楠, 庄铁钢, 邹淇炀, 许沥. 氮磷浓度变化下粉绿狐尾藻的生长规律研究[J]. 中国农学通报, 2021, 37(3): 66-72. | 
| [6] | 范七君, 陈传武, 刘萍, 牛英, 唐艳, 邓崇岭. 树冠覆膜对沙糖橘光合作用及果实品质的影响[J]. 中国农学通报, 2021, 37(22): 57-62. | 
| [7] | 朱艳霞, 陈东亮, 黄燕芬. 壮瑶药野甘草种子萌发特性研究[J]. 中国农学通报, 2021, 37(10): 72-76. | 
| [8] | 庞敏晖, 左强, 邹国元, 韩贵成, 常希光, 冯霜. 日光温室不同种植位置温光变化及对结球生菜产量的影响[J]. 中国农学通报, 2020, 36(34): 38-43. | 
| [9] | 马玲, 黄灵丹, 王蓉, 马荣, 杨常新, 杨冬艳. 宁夏中部干旱带不同跨度双膜拱棚冬季温光环境测试分析[J]. 中国农学通报, 2020, 36(13): 124-130. | 
| [10] | 王健, 刘兴国, 朱浩, 程果锋. 水产养殖对甘肃盐碱区盐碱迁移的影响[J]. 中国农学通报, 2020, 36(12): 152-158. | 
| [11] | 邱彩虹,苏文青,陈家明,王伟宏,刘海山. 基于WiFi的室内智能蔬菜无土栽培结构设计[J]. 中国农学通报, 2019, 35(4): 125-129. | 
| [12] | 张蓉,王晓雯,刘丽丽,朱建亚,朱华. 氨氮和亚硝氮对红剑和孔雀鱼毒性及抗氧化指标的影响[J]. 中国农学通报, 2019, 35(24): 150-155. | 
| [13] | 马亚杰,马小艳,陈全家,任相亮,胡红岩,姜伟丽,王丹,董合林,马艳. 环境因素对不同地区牛筋草种子萌发的影响[J]. 中国农学通报, 2019, 35(17): 60-74. | 
| [14] | 陈进勇,王青,施文彬. 不同照度处理对5种室内植物生长发育的影响[J]. 中国农学通报, 2018, 34(25): 64-69. | 
| [15] | 樊荣辉,黄敏玲,林 兵,王振波,钟淮钦. 不同光照条件对鹤望兰抗寒性影响[J]. 中国农学通报, 2018, 34(24): 154-158. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||