中国农学通报 ›› 2022, Vol. 38 ›› Issue (6): 42-47.doi: 10.11924/j.issn.1000-6850.casb2021-0416
谷书杰1(), 钱禛锋1, 娄永明1,2, 沈庆庆1, 普凤雅1, 曾丹1, 马豪1, 何丽莲1(), 李富生1,3()
收稿日期:
2021-04-19
修回日期:
2021-08-03
出版日期:
2022-02-25
发布日期:
2022-03-16
通讯作者:
何丽莲,李富生
作者简介:
谷书杰,男,1996年出生,河南信阳人,在读硕士研究生,研究方向:作物种质资源评价与利用。通信地址:650201 云南省昆明市盘龙区云南农业大学学生宿舍20栋,E-mail: 基金资助:
GU Shujie1(), QIAN Zhenfeng1, LOU Yongming1,2, SHEN Qingqing1, PU Fengya1, ZENG Dan1, MA Hao1, HE Lilian1(), LI Fusheng1,3()
Received:
2021-04-19
Revised:
2021-08-03
Online:
2022-02-25
Published:
2022-03-16
Contact:
HE Lilian,LI Fusheng
摘要:
探索内生菌对甘蔗抗旱能力的影响,以期为开发利用甘蔗内生菌抗旱性功能菌株提供理论依据和技术支撑。以课题组前期分离鉴定的6株甘蔗内生菌为供试菌株,甘蔗品种‘ROC22’幼苗接种7天后进行干旱胁迫,然后取完全展开的第一叶叶片测定相关生理指标。结果表明,E3、O9和YC89均有较高的ACC脱氨酶活性,不同甘蔗内生菌菌株对甘蔗抗旱性的影响有明显差异。E3、O9和YC89在提高甘蔗耐旱能力方面效果显著,主要表现在降低细胞膜损伤、增加渗透调节物质的含量、降低膜脂过氧化程度和增加SOD、POD活性等方面。试验发现,产ACC脱氨酶的甘蔗内生菌能更有效提高甘蔗抗旱能力。
中图分类号:
谷书杰, 钱禛锋, 娄永明, 沈庆庆, 普凤雅, 曾丹, 马豪, 何丽莲, 李富生. 接种内生菌对干旱胁迫下甘蔗的生理影响[J]. 中国农学通报, 2022, 38(6): 42-47.
GU Shujie, QIAN Zhenfeng, LOU Yongming, SHEN Qingqing, PU Fengya, ZENG Dan, MA Hao, HE Lilian, LI Fusheng. Physiological Effects of Inoculated Endophytes on Sugarcane Under Drought Stress[J]. Chinese Agricultural Science Bulletin, 2022, 38(6): 42-47.
菌株 | ACC脱氨酶活性/(U/mg) |
---|---|
E3 | 0.0490±0.0044cC |
O9 | 0.0453±0.0025cBC |
C12 | 0.0037±0.0006aA |
C9 | 0.0017±0.0006aA |
C6 | 0.0010±0aA |
YC89 | 0.0390±0.007bB |
F值 | 131.674** |
P值 | <0.01 |
菌株 | ACC脱氨酶活性/(U/mg) |
---|---|
E3 | 0.0490±0.0044cC |
O9 | 0.0453±0.0025cBC |
C12 | 0.0037±0.0006aA |
C9 | 0.0017±0.0006aA |
C6 | 0.0010±0aA |
YC89 | 0.0390±0.007bB |
F值 | 131.674** |
P值 | <0.01 |
菌株 | 叶片含水量/% | 相对电导率/% | 叶绿素含量/(mg/g) |
---|---|---|---|
E3 | 70.45±0.49aA | 4.14±0.09aA | 7.05±0.01b |
O9 | 70.05±0.84aA | 4.26±0.03aA | 7.02±0.05ab |
C12 | 70.37±0.59aA | 6.31±0.12cC | 6.94±0.05a |
C9 | 72.88±0.2bB | 7.21±0.1dD | 6.98±0.06ab |
C6 | 72.28±1.02bB | 6.26±0.04cC | 6.97±0.11ab |
YC89 | 77.04±0.4cC | 4.69±0.07bB | 6.93±0.03a |
CK | 70.16±0.22aA | 7.25±0.03dD | 6.92±0.03a |
F值 | 51.958** | 963.319** | 2.271 |
P值 | <0.01 | <0.01 | >0.05 |
菌株 | 叶片含水量/% | 相对电导率/% | 叶绿素含量/(mg/g) |
---|---|---|---|
E3 | 70.45±0.49aA | 4.14±0.09aA | 7.05±0.01b |
O9 | 70.05±0.84aA | 4.26±0.03aA | 7.02±0.05ab |
C12 | 70.37±0.59aA | 6.31±0.12cC | 6.94±0.05a |
C9 | 72.88±0.2bB | 7.21±0.1dD | 6.98±0.06ab |
C6 | 72.28±1.02bB | 6.26±0.04cC | 6.97±0.11ab |
YC89 | 77.04±0.4cC | 4.69±0.07bB | 6.93±0.03a |
CK | 70.16±0.22aA | 7.25±0.03dD | 6.92±0.03a |
F值 | 51.958** | 963.319** | 2.271 |
P值 | <0.01 | <0.01 | >0.05 |
菌株 | 可溶性糖含量/(mg/g) | 可溶性蛋白含量/(mg/g) | Pro含量/(µg/g) |
---|---|---|---|
E3 | 24.27±0.04eD | 60.09±0.23dD | 100.00±0.95dD |
O9 | 22.26±0.08cC | 55.65±0.62bcBC | 97.64±0.72dD |
C12 | 22.48±0.14dC | 56.43±0.59cC | 68.09±1.79aA |
C9 | 21.79±0.14bB | 54.86±0.08abAB | 76.11±2.12cC |
C6 | 22.49±0.05dC | 55.02±0.28abAB | 69.82±1.18abAB |
YC89 | 27.43±0.16fE | 56.30±0.30cC | 110.21±0.72eE |
CK | 21.02±0.11aA | 54.36±0.72aA | 72.18±2.6bB |
F值 | 1059.152** | 52.029** | 350.34** |
P值 | <0.01 | <0.01 | <0.01 |
菌株 | 可溶性糖含量/(mg/g) | 可溶性蛋白含量/(mg/g) | Pro含量/(µg/g) |
---|---|---|---|
E3 | 24.27±0.04eD | 60.09±0.23dD | 100.00±0.95dD |
O9 | 22.26±0.08cC | 55.65±0.62bcBC | 97.64±0.72dD |
C12 | 22.48±0.14dC | 56.43±0.59cC | 68.09±1.79aA |
C9 | 21.79±0.14bB | 54.86±0.08abAB | 76.11±2.12cC |
C6 | 22.49±0.05dC | 55.02±0.28abAB | 69.82±1.18abAB |
YC89 | 27.43±0.16fE | 56.30±0.30cC | 110.21±0.72eE |
CK | 21.02±0.11aA | 54.36±0.72aA | 72.18±2.6bB |
F值 | 1059.152** | 52.029** | 350.34** |
P值 | <0.01 | <0.01 | <0.01 |
菌株 | MDA含量/(nmol/g) | 菌株 | MDA含量/(nmol/g) |
---|---|---|---|
E3 | 14.38±0.22aA | YC89 | 14.73±0.71aAB |
O9 | 13.57±0.27aA | CK | 19.82±0.43dD |
C12 | 18.00±0.4cCD | F值 | 27.852** |
C9 | 16.40±0.27bBC | P值 | <0.01 |
C6 | 18.04±1.72cCD |
菌株 | MDA含量/(nmol/g) | 菌株 | MDA含量/(nmol/g) |
---|---|---|---|
E3 | 14.38±0.22aA | YC89 | 14.73±0.71aAB |
O9 | 13.57±0.27aA | CK | 19.82±0.43dD |
C12 | 18.00±0.4cCD | F值 | 27.852** |
C9 | 16.40±0.27bBC | P值 | <0.01 |
C6 | 18.04±1.72cCD |
菌株 | POD活性/(U/g) | SOD活性/(U/g) |
---|---|---|
E3 | 3090.97±41.18cC | 365.57±2.48c |
O9 | 2686.76±41.18bB | 350.58±16.16bc |
C12 | 2758.09±41.18bB | 334.58±9.64ab |
C9 | 2472.77±41.18aA | 345.01±9.3abc |
C6 | 2710.54±71.33bB | 347.60±4.03abc |
YC89 | 3828.04±41.18dD | 352.22±22.53bc |
CK | 2781.87±71.33bB | 325.65±2.16a |
F值 | 224.303** | 18.667* |
P值 | <0.05 | <0.05 |
菌株 | POD活性/(U/g) | SOD活性/(U/g) |
---|---|---|
E3 | 3090.97±41.18cC | 365.57±2.48c |
O9 | 2686.76±41.18bB | 350.58±16.16bc |
C12 | 2758.09±41.18bB | 334.58±9.64ab |
C9 | 2472.77±41.18aA | 345.01±9.3abc |
C6 | 2710.54±71.33bB | 347.60±4.03abc |
YC89 | 3828.04±41.18dD | 352.22±22.53bc |
CK | 2781.87±71.33bB | 325.65±2.16a |
F值 | 224.303** | 18.667* |
P值 | <0.05 | <0.05 |
[1] | LÍVIA V, SANTA B, MOTA F, et al. Drought tolerance conferred to sugarcane by association with gluconacetobacter diazotrophicus: a transcriptomic view of hormone pathways[J]. PLoS one, 2014, 9(12):e114744. |
[2] | 徐超华, 刘新龙, 李纯佳, 等. 甘蔗非生物胁迫抗性研究进展[J]. 植物遗传资源学报, 2017, 18(3):483-493. |
[3] | FERREIRA T H S, TSUNADA M S, DENIS B, et al. Sugarcane water stress tolerance mechanisms and its implications on developing biotechnology solutions[J]. Frontiers in plantence, 2017, 8. |
[4] | KAUSHAL M. Portraying rhizobacterial mechanisms in drought tolerance[J]. PGPR amelioration in sustainable agriculture, 2019:195-216. |
[5] | GARCIA F H S, MENDONÇA A M C, RODRIGUES M, et al. Water deficit tolerance in sugarcane is dependent on the accumulation of sugar in the leaf[J]. Annals of applied biology, 2020, 176(1). |
[6] |
GOSAL S S, WANI S H, KANG M S. Biotechnology and Drought Tolerance[J]. Journal of crop improvement, 2009, 23(1):19-54.
doi: 10.1080/15427520802418251 URL |
[7] |
MORISON J I L, BAKER N R, MULLINEAUX P M, et al. Improving water use in crop production[J]. Philosophical transactions of the royal society b: biological sciences, 2008, 363:639-658.
doi: 10.1098/rstb.2007.2175 URL |
[8] | 何梦迪, 钟宣伯, 周启政, 等. 氮肥缓解苗期干旱对小麦根系形态建成及生理特性的影响[J]. 核农学报, 2019, 33(11):2246-2253. |
[9] |
QCA C, YL A, XH A, et al. Physiological and iTRAQ based proteomics analyses reveal the mechanism of elevated CO2 concentration alleviating drought stress in cucumber (Cucumis sativus L.) seedlings[J]. Plant physiology and biochemistry, 2019, 143:142-153.
doi: 10.1016/j.plaphy.2019.08.025 URL |
[10] | 郭良栋. 内生真菌研究进展[J]. 菌物系统, 2001, 20(1):148-152. |
[11] | 刘冰, 黄丽丽, 康振生, 等 小麦内生细菌对全蚀病的防治作用及其机制[J]. 植物保护学报, 2007(2). |
[12] | 张志东, 杨波, 章世奎, 等. 不同品种苹果树内生细菌群落多样性及功能[J]. 微生物学通报, 2020, 47(2):500-511. |
[13] | RUBIN R L, JONES A N, MICHAELA H, et al. Opposing effects of bacterial endophytes on biomass allocation of a wild donor and agricultural recipient[J]. FEMS microbiology ecology, 2020(3):3. |
[14] |
VURUKONDA S S K P, VARDHARAJULA S, SHRIVASTAVA M, et al. Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria[J]. Microbiological research, 2016, 184:13-24.
doi: 10.1016/j.micres.2015.12.003 URL |
[15] |
GLICK B R, CHEN G, et al. Promotion of plant growth by ACC deaminase-producing soil bacteria[J]. Eur j plant pathology, 2007, 119(3):329-339.
doi: 10.1007/s10658-007-9162-4 URL |
[16] |
WILKINSON J F. The extracellular polysaccharides of bacteria[J]. Bacteriological reviews, 1958, 22(1):46.
doi: 10.1128/br.22.1.46-73.1958 pmid: 13522509 |
[17] | DÍAZ HERRERA S, GROSSI C, ZAWOZNIK M, et al. Wheat seeds harbour bacterial endophytes with potential as plant growth promoters and biocontrol agents of Fusarium graminearum[J]. Microbiological research, 2016:37-43. |
[18] | 赵慧云, 戚名扬, 党长喜, 等. 植物根围促生菌诱导小麦幼苗耐旱性的研究[J]. 云南农业大学学报:自然科学, 2020, 35(1):8-14. |
[19] |
SHIVSING M P, ARCHNA S. Growth stage and tissue specific colonization of endophytic bacteria having plant growth promoting traits in hybrid and composite maize (Zea mays L.)[J]. Microbiological research, 2018, 214:101-113.
doi: 10.1016/j.micres.2018.05.016 URL |
[20] | 李龚程, 张仕颖, 肖炜, 等. 水稻中内生菌研究进展[J]. 中国农学通报, 2015, 31(12):157-162. |
[21] | 许明双, 生吉萍, 郭顺堂, 等. 水稻内生菌K12G2菌株的鉴定及其促生特性研究[J]. 中国农学通报, 2014, 30(9):66-70. |
[22] |
VINOCUR B, ALTMAN A. Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations[J]. Current opinion in biotechnology, 2005, 16(2):123-132.
doi: 10.1016/j.copbio.2005.02.001 URL |
[23] | 王雪梅. 气候变暖导致全球干旱[J]. 科学新闻, 2011(6):56-59. |
[24] | FLEXAS J, NIINEMETS Ü, GALLÉ A, et al. Diffusional conductances to CO2 as a target for increasing photosynjournal and photosynthetic water-use efficiency[J]. Photosynjournal research, 2013, 117(1-3). |
[25] | ULLAH A, NISAR M, ALI H, et al. Drought tolerance improvement in plants: an endophytic bacterial approach[J]. Applied microbiology and biotechnology, 2019, 8. |
[26] | 徐萌, 王金缘, 胡金丽, 等. 植物内生菌对大豆促生长和抗胁迫作用的研究进展[J]. 大豆科学, 2017, 36(6):965-969. |
[27] |
曹凯, 李远婷, 安登第, 等. 内生菌对植物抗干旱胁迫能力的影响研究进展[J]. 生物技术通报, 2015, 31(9):23-29.
doi: 10.13560/j.cnki.biotech.bull.1985.2015.09.003 |
[28] | 王娜, 杨镇, 马晓颖, 等. 植物内生菌次生代谢产物对干旱胁迫下辣椒幼苗生理机制的影响[J]. 北方园艺, 2014(22):29-32. |
[29] | YANG J, KLOEPPER J W, RYU C M. Rhizosphere bacteria help plants tolerate abiotic stress[J]. Trends in Plant ence, 2009, 14(1):1-4. |
[30] | SALME T, ISLAM A A E, LUCIAN C, et al. Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles[J]. PloS one, 2014, 9(5). |
[31] | 易家宁, 王康才, 张琪绮, 等. 干旱胁迫对紫苏生长及品质的影响[J]. 核农学报, 2020, 34(6):1320-1326. |
[32] |
MANCOSU N, SNYDER R, KYRIAKAKIS G, et al. Water Scarcity and Future Challenges for Food Production[J]. Water, 2015, 7(3):975-992.
doi: 10.3390/w7030975 URL |
[33] | 刘球, 李志辉, 吴际友, 等. 外源亚精胺对不同干旱胁迫程度下红椿幼苗生理功能的修复调节[J]. 中南林业科技大学学报, 2017, 37(7):66-72. |
[34] |
PENROSE D M, GLICK B R. Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria[J]. Physiologia plantarum, 2010, 118(1):10-15.
doi: 10.1034/j.1399-3054.2003.00086.x URL |
[35] |
SANDHYA VARDHARAJULA, SHAIK ZULFIKAR ALI, MINAKSHI GROVER, et al. Drought-tolerant plant growth promoting Bacillus spp.: effect on growth, osmolytes, and antioxidant status of maize under drought stress[J]. Journal of plant interactions, 2011, 6(1):1-14.
doi: 10.1080/17429145.2010.535178 URL |
[36] | 闫兴富, 邓晓娟, 王静, 等. 种子大小和干旱胁迫对辽东栎幼苗生长和生理特性的影响[J]. 应用生态学报, 2020, 31(10):3331-3339. |
[37] | GOVINDASAMY V, GEORGE P, KUMAR M, et al. Multi-trait PGP rhizobacterial endophytes alleviate drought stress in a senescent genotype of sorghum [Sorghum bicolor (L.) Moench][J]. 3 Biotech, 2020, 10(1). |
[38] | OIS G F, ANNICK B, ANNIE C, et al. Alleviation of drought stress and metabolic changes in timothy (Phleum pratense L.) colonized with Bacillus subtilis B26[J]. Frontiers in plant science, 2016, 7. |
[39] | 严美玲, 李向东, 林英杰, 等. 苗期干旱胁迫对不同抗旱花生品种生理特性,产量和品质的影响[J]. 作物学报, 2007, 33(1):113. |
[40] | STRESS M I I R. Microbial inoculation in rice regulates antioxidative reactions and defense related genes to mitigate drought stress[J]. Scientific reports, 2020, 10. |
[41] | SHAHANAZ, PARVEEN, HARUN-UR M, et al. Molecular regulatory mechanism of isoprene emission under short-term drought stress in the tropical tree Ficus septica[J]. Tree physiology, 2018. |
[42] | NAMWONGSA J, JOGLOY S, VORASOOT N, et al. Endophytic bacteria improve root traits, biomass and yield of Helianthus tuberosus L. under normal and deficit water conditions[J]. Journal of microbiology and biotechnology, 2019, 29(11). |
[43] | MAHMOOD N S, MAQSHOOF A, AAMMAR T M, et al. Appraising the potential of EPS-producing rhizobacteria with ACC-deaminase activity to improve growth and physiology of maize under drought stress[J]. Physiologia plantarum, 2020(2). |
[44] | SUBHAN D, MUHAMMAD Z, FAUZIA M, et al. ACC-deaminase producing plant growth promoting rhizobacteria and biochar mitigate adverse effects of drought stress on maize growth[J]. PloS one, 2020, 15(4). |
[45] |
SAIKIA J, SARMA R K, DHANDIA R, et al. Alleviation of drought stress in pulse crops with ACC deaminase producing rhizobacteria isolated from acidic soil of Northeast India.[J]. Scientific reports, 2018, 8(1):3560.
doi: 10.1038/s41598-018-21921-w URL |
[46] | MAXTON ANN, SINGH POONAM, MASIH SAM A, 等. 产ACC脱氨酶细菌介导的辣椒抗旱和耐盐[J]. 辣椒杂志, 2018, 16(3):42-50. |
[1] | 杨小霞, 严加坤. 干旱胁迫对不同年代谷子苗期根系表型的影响[J]. 中国农学通报, 2023, 39(7): 24-32. |
[2] | 张木清, 杨本鹏. 关于加快甘蔗源头创新、保障国家食糖安全的建议[J]. 中国农学通报, 2023, 39(5): 6-8. |
[3] | 张彬, 李金秀, 王震, 石利朝, 李金榜. 干旱胁迫下‘宛麦632’的抗旱性分析[J]. 中国农学通报, 2022, 38(36): 12-16. |
[4] | 崔晶晶, 王丽, 窦骞瑶, 韩卓君, 潘恒艳, 宋柏权, 周建朝, 王秋红. 肾形肾形虫干预下甜菜幼苗的光合响应[J]. 中国农学通报, 2022, 38(36): 23-33. |
[5] | 罗志明, 覃伟, 尹炯, 李银煳, 张荣跃, 李俊. 甘蔗种质对甘蔗蓟马的耐害性研究[J]. 中国农学通报, 2022, 38(34): 107-112. |
[6] | 樊仙, 全怡吉, 杨绍林, 李如丹, 邓军, 张跃彬. 甘蔗苗期抗旱性鉴定评价研究[J]. 中国农学通报, 2022, 38(3): 17-24. |
[7] | 石杨, 尹希龙, 李王胜, 兴旺. PEG模拟干旱胁迫对耐旱型与干旱敏感型甜菜种质形态指标的影响[J]. 中国农学通报, 2022, 38(29): 45-51. |
[8] | 李王胜, 王雪倩, 尹希龙, 石杨, 兴旺. 甜菜苗期抗旱性鉴定及指标筛选[J]. 中国农学通报, 2022, 38(21): 17-23. |
[9] | 廖张波, 何远兰, 莫神带. 气象因素对甘蔗生产的影响及环境互作基因研究进展[J]. 中国农学通报, 2022, 38(21): 82-87. |
[10] | 王晓春, 杨天辉, 王川, 杨炜迪, 高婷. 混合盐碱胁迫对紫花苜蓿的生长和生理指标的影响[J]. 中国农学通报, 2022, 38(19): 139-145. |
[11] | 银珊珊, 周国彦, 顾博文, 武春成, 闫立英, 谢洋. 褪黑素引发对干旱胁迫下黄瓜幼苗生理特性的影响[J]. 中国农学通报, 2022, 38(19): 30-36. |
[12] | 张瑞玖, 马恢, 籍立杰, 任德志, 李双东, 张耀辉, 王莉红. 干旱胁迫对马铃薯品种生长及生理生化指标的影响[J]. 中国农学通报, 2022, 38(15): 34-39. |
[13] | 郑植尹, 王芳. 干旱胁迫对马铃薯生理特性及解剖结构的影响[J]. 中国农学通报, 2021, 37(8): 14-24. |
[14] | 张寒舒, 李文凤, 单红丽, 王晓燕, 张荣跃, 房超, 段婷颖, 李泽娟, 黄丕忠, 黄应昆. 复合高效配方药剂对甘蔗褐锈病防控效果评价[J]. 中国农学通报, 2021, 37(6): 147-152. |
[15] | 王晓燕, 单红丽, 张荣跃, 仓晓燕, 王长秘, 李文凤, 尹炯, 罗志明, 黄应昆. 甘蔗抗褐锈病新基因抗感病池构建及SSR多态性引物筛选[J]. 中国农学通报, 2021, 37(6): 97-103. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||