[1] |
GAO Z, WU C, WU J, et al. Antioxidant and anti-inflammatory properties of an aminoglycan-rich exopolysaccharide from the submerged fermentation of Bacillus thuringiensis[J]. International journal of biological macromolecules, 2022, 220:1010-1120.
|
[2] |
KIM I, CHHETRI G, SO Y, et al. Characteristics and biological activity of exopolysaccharide produced by Lysobacter sp. MMG2 isolated from the roots of Tagetes patula[J]. Microorganisms, 2022, 10(7):1257.
|
[3] |
FARAG M M S, MOGHANNEM S A M, SHEHABELDINE A M, et al. Antitumor effect of exopolysaccharide produced by Bacillus mycoides[J]. Microbial pathogenesis, 2020,140:103947.
|
[4] |
ADEBAYO-TAYO B, FASHOGBON R. In vitro antioxidant, antibacterial, in vivo immunomodulatory, antitumor and hematological potential of exopolysaccharide produced by wild type and mutant Lactobacillus delbureckii subsp. bulgaricus[J]. Heliyon, 2020, 6(2):e03268.
|
[5] |
ZHANG Q, WANG J, SUN Q, et al. Characterization and Antioxidant activity of released exopolysaccharide from potential probiotic Leuconostoc mesenteroides LM187[J]. Journal of microbiology and biotechnology, 2021, 31(8):1144-1153.
|
[6] |
李洋. 肠膜明串珠菌SN-8胞外多糖分离纯化, 结构鉴定及功能特性研究[D]. 沈阳: 沈阳农业大学, 2020.
|
[7] |
LJUBIC V, PERENDIJA J, CVETKOVIC S, et al. Removal of Ni2+ ions from contaminated water by new exopolysaccharide extracted from K. oxytoca J7 as Biosorbent[J]. Journal of polymers and the environment, 2023,21:s10924.
|
[8] |
WU J, HAN X, YE M, et al. Exopolysaccharides synthesized by lactic acid bacteria:biosynthesis pathway, structure-function relationship, structural modification and applicability[J]. Critical reviews in food science and nutrition, 2022:1-22.
|
[9] |
CHEN Z, NI D, ZHANG W, et al. Lactic acid bacteria-derived α-glucans: from enzymatic synthesis to miscellaneous applications[J]. Biotechnology advances, 2021,47:107708.
|
[10] |
SHI K, AN W, MENG Q, et al. Partial characterization and lyoprotective activity of exopolysaccharide from Oenococcus oeni 28A-1[J]. Process biochemistry, 2021, 101:128-136.
|
[11] |
MIYAMOTO J, SHIMIZU H, HISA K, et al. Host metabolic benefits of prebiotic exopolysaccharides produced by Leuconostoc mesenteroides[J]. Gut microbes, 2023, 15(1):2161271.
|
[12] |
王小杰, 张华, 陈其欣, 等. 肠膜明串珠菌产葡聚糖与低聚糖及其产物应用研究进展[J]. 中国乳品工业, 2019, 47(6):33-36.
|
[13] |
GANGOITI J, PIJNING T, DIJKHUIZEN L. Biotechnological potential of novel glycoside hydrolase family 70 enzymes synthesizing α-glucans from starch and sucrose[J]. Biotechnology advances, 2018, 36(1):196-207.
doi: S0734-9750(17)30129-5
pmid: 29133008
|
[14] |
DU R P, ZHOU Z J, HAN Y. Functional identification of the dextransucrase gene of Leuconostoc mesenteroidesDRP105[J]. International journal of molecular sciences, 2020, 21(18):6596.
|
[15] |
YAN M H, WANG B H, XU X F, et al. Molecular and functional study of a branching sucrase-like glucansucrase reveals an evolutionary intermediate between two subfamilies of the GH70 enzymes[J]. Applied and environmental microbiology, 2018, 84(9):e02810-e02817.
|
[16] |
ARGUELLO-MORALES M A, REMAUD-SIMEON M, PIZZUT S, et al. Sequence analysis of the gene encoding alternansucrase, a sucrose glucosyltransferase from Leuconostoc mesenteroides NRRL B-1355[J]. FEMS microbiology letters, 2000, 182(1):81-85.
|
[17] |
PIJNING T, VUJICIC-ZAGAR A, KRALJ S, et al. Structure of the alpha-1,6/alpha-1,4-specific glucansucrase GTFA from Lactobacillus reuteri 121[J]. Acta crystallographica section f-structural biology communications, 2012,68:1448-1454.
|
[18] |
张皓, 祖航天, 胡杰, 等. 一种产碱性葡聚糖蔗糖酶菌株的筛选、鉴定及其合成低聚糖的研究[J]. 食品科技, 2021, 46(7):22-28.
|
[19] |
袁宇, 蓝艳禹, 黄臣, 等. 响应面法优化肠膜明串珠菌生物合成右旋糖酐工艺条件[J]. 食品研究与开发, 2018, 39(7):187-192.
|
[20] |
叶广彬, 陈源红, 王长丽, 等. 柠檬明串珠菌TD1产胞外多糖条件的响应面法优化及其抗氧化性研究[J]. 中国酿造, 2018, 37(11):70-75.
doi: 10.11882/j.issn.0254-5071.2018.11.015
|
[21] |
LASKOWSKI R A, SWINDELLS M B. LigPlot+:multiple ligand-protein interaction diagrams for drug discovery[J]. Journal of chemical nfiormation and modeling, 2011, 51(10):2778-2786.
|
[22] |
SHAH D S H, JOUCLA G, REMAUD-SIMEON M, et al. Conserved repeat motifs and glucan binding by glucansucrases of Oral Streptococci and Leuconostoc mesenteroides[J]. Journal of bacteriology, 2004, 186(24):8301-8308.
|
[23] |
WANGPAIBOON K, PITAKCHATWONG C, PANPETCH P, et al. Modified properties of alternan polymers arising from deletion of SH3-like motifs in Leuconostoc citreum ABK-1 alternansucrase[J]. Carbohydrate polymers, 2019,220:103-109.
|
[24] |
MENG X, GANGOITI J, DE KOK N, et al. Biochemical characterization of two GH70 family 4,6-α-glucanotransferases with distinct product specificity from Lactobacillus aviarius subsp. aviarius DSM 20655[J]. Food chemistry, 2018,253:236-246.
|
[25] |
JOHNSON J L, YARON T M, HUNTSMAN E M, et al. An atlas of substrate specificities for the human serine/threonine kinome[J]. Nature, 2023, 613(7945):759.
|
[26] |
MACZUGA N, TRAN E N H, MORONA R. Subcellular localization of the enterobacterial common antigen GT-E-like glycosyltransferase, WecG[J]. Molecular microbiology, 2022, 118(4):403-416.
|
[27] |
刘娜, 田雨菁, 冯哲瀚, 等. 蓝莓3-O-葡萄糖基转移酶基因克隆及生物信息学分析[J]. 华北农学报, 2023, 38(2):120-128.
doi: 10.7668/hbnxb.20193980
|
[28] |
陈琦, 李春秀, 郑高伟, 等. 工业蛋白质构效关系的计算生物学解析[J]. 生物工程学报, 2019, 35(10):1829-1842.
|
[29] |
YU L, QIAN Z, GE J, et al. Glucansucrase produced by lactic acid bacteria: structure, properties, and applications[J]. Fermentation, 2022, 8(11):629.
|
[30] |
VUJICIC-ZAGAR A, PIJNING T, KRALJ S, et al. Crystal structure of a 117 kDa glucansucrase fragment provides insight into evolution and product specificity of GH70 enzymes[J]. Proceedings of the national academy of sciences of the united states of America, 2010, 107(50):21406-21411.
|
[31] |
MOLINA M, CIOCI G, MOULIS C, et al. Bacterial α-glucan and branching sucrases from GH70 family: discovery, structure-function relationship studies and engineering[J]. Microorganisms, 2021, 9(8):1607.
|
[32] |
杨卫康. 4,6-α-葡聚糖转移酶的挖掘、定性及产物特异性研究[D]. 无锡: 江南大学, 2023.
|
[33] |
谭姚姚, 何贺贺, 王宏萌, 等. Clostridium butyricum蔗糖磷酸化酶的酶学性质及其功能研究[J]. 广西科学, 2022, 29(6):1094-1102.
|
[34] |
WANG J, ZHANG J, WANG L, et al. Continuous production of fructooligosaccharides by recycling of the thermal-stable β-fructofuranosidase produced by Aspergillus niger[J]. Biotechnology letters, 2021, 43(6):1175-1182.
|
[35] |
RODRIGUES S, LONA L M F, FRANCO T T. Effect of phosphate concentration on the production of dextransucrase by Leuconostoc mesenteroides NRRL B512F[J]. Bioprocess and biosystems engineering, 2003, 26(1):57-62.
|
[36] |
虞宁馨, 于连升, 齐心彤, 等. 肠膜明串珠菌葡聚糖蔗糖酶生物信息学分析[J]. 黑龙江大学自然科学学报, 2023, 65(5):1602-1606.
|
[37] |
原晓龙, 陈剑, 陈中华, 等. 滇牡丹类黄酮7-O-葡萄糖基转移酶基因的鉴定与表达分析[J]. 西部林业科学, 2018, 47(5):19-25.
|
[38] |
李先良, 李居宁, 李傲, 等. 棉花木葡聚糖转移/水解酶基因克隆和分析[J]. 湖北农业科学, 2017, 56(4):756-761.
|
[39] |
杜仁鹏. 肠膜明串珠菌DRP105右旋糖酐生物合成机制的研究[D]. 天津: 天津大学, 2021.
|