欢迎访问《中国农学通报》,

中国农学通报 ›› 2024, Vol. 40 ›› Issue (18): 150-156.doi: 10.11924/j.issn.1000-6850.casb2023-0645

• 食品·营养·检测·安全 • 上一篇    下一篇

内生真菌RP4发酵对工业大麻三种主要大麻素含量的影响

关昕(), 张赫, 祁可香, 李宛儒, 姜硕, 郑春英()   

  1. 黑龙江大学,生命科学学院,农业微生物技术教育部工程研究中心,黑龙江省寒区植物基因与生物发酵重点实验室,黑龙江省普通高校微生物重点实验室,哈尔滨 150080
  • 收稿日期:2023-09-12 修回日期:2024-01-15 出版日期:2024-06-18 发布日期:2024-06-18
  • 通讯作者:
    郑春英,女,1968年出生,黑龙江哈尔滨人,教授,博士,主要从事食品和药物生物活性挖掘及研发。通信地址:150080 黑龙江省哈尔滨市南岗区学府路74号 黑龙江大学生命科学学院,Tel:0451-86608586,E-mail:
  • 作者简介:

    关昕,女,1999年出生,黑龙江双鸭山人,硕士研究生,研究方向:食品和药物生物活性挖掘及研发。通信地址:150080 黑龙江省哈尔滨市南岗区学府路74号 黑龙江大学生命科学学院,Tel:0451-886608586,E-mail:

  • 基金资助:
    黑龙江省现代农业产业技术协同创新体系项目“麻类食品与药物研发协同创新项目”(YYM19STX-1); 黑龙江大学横向项目“工业大麻内生真菌及其次生代谢物提取、分离、鉴定”(21192); 黑龙江大学横向项目“一株产大麻酚的大麻内生真菌及其应用”(23114); 黑龙江大学横向项目“一种利用甘草内生真菌发酵工业大麻的方法”(23113)

Effects of Endophytic Fungus RP4 Fermentation on Contents of Three Major Cannabinoids in Cannabis sativa L.

GUAN Xin(), ZHANG He, QI Kexiang, LI Wanru, JIANG Shuo, ZHENG Chunying()   

  1. Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education/ Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region/ Key Laboratory of Microbiology, College of Heilongjiang Province/ School of Life Sciences, Heilongjiang University, Harbin 150080
  • Received:2023-09-12 Revised:2024-01-15 Published:2024-06-18 Online:2024-06-18

摘要:

本研究旨在通过甘草内生真菌RP4菌株对工业大麻进行发酵,以高效生产大麻二酚(CBD)原料。选取其3种主要大麻素:CBD、CBDA和THC为研究对象,并使用高效液相色谱法分析了发酵过程中这3种大麻素的含量动态变化。研究发现,在发酵过程中,CBD和THC的含量均呈现先增加后降低的趋势,当发酵时间为3 d时,CBD和THC的含量分别达到最大值5.8643±0.0726和0.4878±0.0002 mg/g,且THC的增加始终保持在国家管控的范围内(THC<0.3%),而CBDA含量持续下降,尤其在发酵第1天内降低幅度最大。因工业大麻产地差异以及选取的实验部位差异,经发酵后其大麻素成分含量增加也有所不同。上述结果说明,采用微生物发酵技术,可以特定提高工业大麻中CBD的含量,从而提高工业大麻资源的利用率,并为CBD以及其他次生代谢产物的提取分离奠定了基础。

关键词: 工业大麻, 大麻二酚, 四氢大麻酚, 大麻二酚酸, 发酵, 微生物发酵, 高效液相色谱法, 次生代谢产物

Abstract:

In order to efficiently produce cannabidiol (CBD) raw materials, Cannabis sativa L. was fermented by using the endophytic fungus RP4 strain of licorice with good biological activity. Three major cannabinoids, CBD, CBDA and THC were selected as the research objects to study the dynamic changes of CBD, CBDA and THC contents before and after fermentation. The dynamic changes of CBD, CBDA and THC contents in Cannabis sativa L. during fermentation were analyzed by HPLC. Results showed that during the fermentation process, the contents of CBD and THC increased first and then decreased. When the fermentation time was 3 days, both the contents of CBD and THC reached the maximum value of 5.8643±0.0726 and 0.4878±0.0002 (mg/g) respectively, and the increase of THC was always kept within the scope of national control (THC<0.3%), the content of CBDA decreased continuously, especially in the first day of fermentation. After fermentation in different regions and different parts of Cannabis sativa L., the content of cannabinoid components increased differently. The above results indicated that the microbial fermentation technology could be used to produce CBD in Cannabis sativa L. directly and efficiently, which greatly improved the utilization rate of Cannabis sativa L. resources and laid a foundation for the extraction and separation of CBD and other secondary metabolites.

Key words: Cannabis sativa L., cannabidiol, tetrahydrocannabinol, cannabidiolic acid, fermentation, microbial fermentation, high-performance liquid chromatography (HPLC), secondary metabolites