[1] |
谢和平, 张茹, 张泽天, 等. 深地科学与深地工程技术探索与思考[J]. 煤炭学报, 2023, 48(11):3959-3978.
|
[2] |
TRENBERTH K E, DAI A G, VAN DER SCHRIER G, et al. Global warming and changes in drought[J]. Nature climate change, 2014, 4(1):17-22.
|
[3] |
AL-KHAYRI J M, RASHMI R, TOPPO V, et al. Plant secondary metabolites: the weapons for biotic stress management[J]. Metabolites, 2023, 13(6):716.
|
[4] |
陈辉蓉, 吴振斌, 贺锋, 等. 植物抗逆性研究进展[J]. 环境污染治理技术与设备, 2001(3):7-13.
|
[5] |
陈晨, 杨凯波, 王奎萍. 不同胁迫对植物生长发育的影响及植物抗胁迫机制综述[J]. 江苏农业科学, 2024, 52(19):15-24.
|
[6] |
ALDUBAI A A, ALSADON A A, MIGDADI H H, et al. Response of tomato genotypes to heat stress using morphological and expression study[J]. Plants-basel, 2022, 11(5):615.
|
[7] |
施干卫, 范菁, 董天阳. 基于环境敏感的植物动态生长模型研究[J]. 计算机应用研究, 2007(3):223-225.
|
[8] |
WANG J, ZHANG Q, TUNG J, et al. High-quality assembled and annotated genomes of Nicotiana tabacum and Nicotiana benthamiana reveal chromosome evolution and changes in defense arsenals[J]. Molecular plant, 2024, 17(3):423-437.
|
[9] |
GOODIN M M, ZAITLIN D, NAIDU R A, et al. Nicotiana benthamiana: its history and future as a model for plant-pathogen interactions[J]. Molecular plant microbe interact, 2015, 2015(1):28-39.
|
[10] |
RANAWAKA B, AN J, LORENC M T, et al. A multi-omic Nicotiana benthamiana resource for fundamental research and biotechnology[J]. Nature plants, 2023, 9(9):1558-1571.
|
[11] |
BALLY J, JUNG H, MORTIMER C, et al. The rise and rise of Nicotiana benthamiana: a plant for all reasons[J]. Annual review of phytopathology, 2018,56:405-426.
|
[12] |
TAMURA K, LIU H T, TAKAHASHI H. Auxin induction of cell cycle regulated activity of tobacco telomerase[J]. Journal of biological chemistry, 1999, 274(30):20997-21002.
doi: 10.1074/jbc.274.30.20997
pmid: 10409648
|
[13] |
HARANT A, PAI H, SAKAI T, et al. A vector system for fast-forward studies of the HOPZ-ACTIVATED RESISTANCE1 (ZAR1) resistosome in the model plant Nicotiana benthamiana[J]. Plant physiology, 2022, 188(1):70-80.
|
[14] |
张方晴, 史佳欣, 于静, 等. 本氏烟草悬浮细胞NBS-1的创建及底盘特征分析[J]. 生物工程学报, 2024, 40(6):1935-1949.
|
[15] |
张玉军, 莫志江. 文献中正交试验的常见问题分析和解决方法[J]. 中国现代应用药学, 2013, 30(6):696-700.
|
[16] |
ELMARDY N A, YOUSEF A F, LIN K, et al. Photosynthetic performance of rocket (Eruca sativa. Mill.) grown under different regimes of light intensity, quality, and photoperiod[J]. Plos one, 2021, 16(9):e0257745.
|
[17] |
CHEN W, YAN M, CHEN S, et al. The complete genome assembly of Nicotiana benthamiana reveals the genetic and epigenetic landscape of centromeres[J]. Nature plants, 2024, 10(12):1928-1943.
|
[18] |
KOUBOURIS G, BOURANIS D, VOGIATZIS E, et al. Leaf area estimation by considering leaf dimensions in olive tree[J]. Scientia horticulturae, 2018,240:440-445.
|
[19] |
TANO B F, BROU C Y, DOSSOU-YOVO E R, et al. Spatial and temporal variability of soil redox potential, pH and electrical conductivity across a toposequence in the savanna of West Africa[J]. Agronomy-basel, 2020, 10(11):1787.
|
[20] |
魏明月, 云菲, 刘国顺, 等. 不同光环境下烟草光合特性及同化产物的积累与分配机制[J]. 应用生态学报, 2017, 28(1):159-168.
doi: 10.13287/j.1001-9332.201701.010
|
[21] |
LU T, MENG Z J, ZHANG G X, et al. Sub-high temperature and high light intensity induced irreversible inhibition on photosynthesis system of tomato plant[J]. Frontiers in plant science, 2017,8:365.
|
[22] |
ATKIN O K, EVANS J R, BALL M C, et al. Leaf respiration of snow gum in the light and dark. interactions between temperature and irradiance1[J]. Plant physiology, 2000, 122(3):915-924.
pmid: 10712556
|
[23] |
王志红, 孔德钧, 陈丽莉, 等. 低氮下外源海藻糖对烤烟叶绿素代谢及叶绿体发育的影响[J]. 南方农业学报, 2019, 50(6):1191-1196.
|
[24] |
BOWMAN W D, CONANT R T. Shoot growth dynamics and photosynthetic response to increased nitrogen availability in the alpine willow salix-glauca[J]. Oecologia, 1994, 97(1):93-99.
|
[25] |
NIINEMETS Ü, KULL O, TENHUNEN J D. Within-canopy variation in the rate of development of photosynthetic capacity is proportional to integrated quantum flux density in temperate deciduous trees[J]. Plant cell and environment, 2004, 27(3):293-313.
|
[26] |
BAO J, LI J, WANG G, et al. Branch growth, leaf canopies and photosynthetic responses of Zizyphus jujube cv. “Huizao” to nutrient addition in the arid areas of northwest China[J]. Diversity, 2022, 14(11):914.
|
[27] |
蔡祖聪, 沈光裕, 颜晓元, 等. 土壤质地、温度和Eh对稻田甲烷排放的影响[J]. 土壤学报, 1998(2):145-154.
|
[28] |
DENER E, KACELNIK A, SHEMESH H. Pea plants show risk sensitivity[J]. Current biology, 2016, 26(13):1763-1767.
doi: S0960-9822(16)30459-6
pmid: 27374342
|
[29] |
XU Y, FU X. Reprogramming of plant central metabolism in response to abiotic stresses: a metabolomics view[J]. International journal of molecular sciences, 2022, 23(10):5716.
|
[30] |
RANE J, SINGH A K, KUMAR M, et al. The adaptation and tolerance of major cereals and legumes to important abiotic stresses[J]. International journal of molecular sciences, 2021, 22(23):12970.
|
[31] |
ARO E M, VIRGIN I, ANDERSSON B. Photoinhibition of photosystem II. inactivation, protein damage and turnover[J]. Biochim biophys acta, 1993, 1143(2):113-134.
doi: 10.1016/0005-2728(93)90134-2
pmid: 8318516
|
[32] |
陈坤. 植物氮素高效吸收研究进展[J]. 安徽农业科学, 2018, 46(26):31-33.
|