欢迎访问《中国农学通报》,

中国农学通报 ›› 2025, Vol. 41 ›› Issue (30): 131-136.doi: 10.11924/j.issn.1000-6850.casb2024-0626

• 资源·环境·生态·土壤 • 上一篇    下一篇

基于时段分组的高寒草原牧草产量气象驱动机制与预测模型研究

杨斐1(), 刘文兵2, 张海春2, 马文元3()   

  1. 1 青海省贵德县气象局, 青海贵德 811799
    2 青海省海南州气象局, 青海共和 813099
    3 青海省同德县气象局, 青海同德 813201
  • 收稿日期:2024-10-30 修回日期:2025-09-01 出版日期:2025-10-25 发布日期:2025-11-04
  • 通讯作者:
    马文元,男,1977年出生,副高级工程师,本科,研究方向:大气科学。通信地址:813201 青海省同德县尕巴松多镇东关路441号 同德县气象局,E-mail:
  • 作者简介:

    杨斐,女,1989年出生,工程师,本科,研究方向:农业气象。通信地址:811799 青海省贵德县河阴镇祥云路59号 贵德县气象局,E-mail:

Meteorological Driving Mechanisms and Predictive Modeling of Alpine Grassland Forage Yield Based on Temporal Grouping

YANG Fei1(), LIU Wenbing2, ZHANG Haichun2, MA Wenyuan3()   

  1. 1 Guide County Meteorological Bureau in Qinghai, Guide, Qinghai 811799
    2 Meteorological Bureau in Hainan State of Qinghai Province, Gonghe, Qinghai 813099
    3 Tongde County Meteorological Bureau in Qinghai, Tongde, Qinghai 813201
  • Received:2024-10-30 Revised:2025-09-01 Published:2025-10-25 Online:2025-11-04

摘要:

本研究旨在探讨气象因子对高寒草原牧草产量的分时段调控机制,为草地资源管理及产量预测提供科学依据。基于青海省同德县巴滩高寒草原2005—2023年的牧草鲜草产量及气象数据,采用时段分组法划分13个气象时段,并运用相关性分析和多元线性回归模型,解析降水、温度、湿度、日照和风速等因子对牧草产量的影响及其时段特异性。结果显示:牧草产量呈弱增长趋势(气候倾向率1801.4 kg/(hm2·10a)),变异系数达59.3%,表明其对气候波动响应敏感。降水是主要的促进因子,在生长盛期(5—8月)的效应最显著(r=0.294);相对湿度在生长后期通过调节蒸汽压亏缺发挥补偿作用(5—8月r=0.462);日照与风速呈持续抑制效应;温度作用具时段性,春季促进生长,而夏季影响不显著。构建的产量预测模型(R2=0.934)识别出3个关键因子:上年12月至当年8月的累积降水、5—8月均温和上年11月至当年8月的平均相对湿度。研究表明,高寒草原牧草产量主要受水分调控,且多因子间存在显著的时序互作效应,体现出“水热耦合、阶段互补”的生态适应策略。建议依据物候阶段制定针对性管理措施,并聚焦关键时段的气象变量,以提升产量预测的精度。

关键词: 高寒草原, 牧草产量, 气象因子, 相对湿度, 时段分组法, 产量预测, 多元线性回归, 温湿协同

Abstract:

To explore the stage-specific regulatory mechanisms of meteorological factors on forage yield in alpine steppe and to provide a scientific basis for grassland resource management and yield forecasting, we used fresh forage yield and concurrent meteorological records from the Batan alpine steppe, Tongde County of Qinghai Province during 2005-2023 to conduct study. Thirteen meteorological time-windows were delimited using the stage-grouping approach. Correlation analysis and multiple linear regression were employed to quantify the impacts of precipitation, mean air temperature, relative humidity, sunshine duration, and wind speed on forage yield and to characterize their stage-specific responses. Fresh forage yield exhibited a weak upward trend, with a climate-tendency rate of 1801.4 kg/hm2 decade and a coefficient of variation of 59.3%, indicating high sensitivity to climatic fluctuations. Precipitation was the dominant promoting driver, exerting the strongest positive effect during the peak-growing window (May-August), with Pearson’s r=0.294 (P< 0.05). Relative humidity acted compensatory role in the late season by modulating vapor pressure deficit (VPD), as evidenced by r=0.462 (P<0.01) for May-August. Sunshine duration and wind speed exerted persistent suppressive effects across all stages. Temperature effects were stage-dependent: beneficial in spring but statistically non-significant during summer. The developed yield-forecasting model (adjusted R2=0.934, n=19, P<0.001) incorporated three pivotal variables: precipitation from December of the previous year to August of the current year, mean temperature from May to August, and relative humidity from November of the previous year to August of the current year. Forage yield formation in alpine steppe is water-dominated, with significant multi-factor temporal interactions, reflecting an ecological adaptation strategy of ‘water-heat coupling and stage complementarity’. We recommend developing stage-specific management protocols aligned with phenological phases and focusing on key meteorological variables within critical windows to improve forecasting accuracy.

Key words: alpine steppe, forage yield, meteorological factors, relative humidity, stage-grouping approach, yield forecasting, multiple linear regression, water-heat synergy