中国农学通报 ›› 2021, Vol. 37 ›› Issue (18): 117-124.doi: 10.11924/j.issn.1000-6850.casb2020-0384
所属专题: 植物保护
收稿日期:
2020-08-21
修回日期:
2020-11-16
出版日期:
2021-06-25
发布日期:
2021-07-13
通讯作者:
彭强,赵小明
作者简介:
王岩,男,1995年出生,山东烟台人,研究生,研究方向:壳寡糖降解蔬菜中农药残留。通信地址:712100 陕西省杨凌区西北农林科技大学北校区食品科学与工程学院,Tel:13573528008,E-mail: 基金资助:
Wang Yan1,2(), Peng Qiang2(
), Zhao Xiaoming1(
), Yin Heng1
Received:
2020-08-21
Revised:
2020-11-16
Online:
2021-06-25
Published:
2021-07-13
Contact:
Peng Qiang,Zhao Xiaoming
摘要:
为了促进农药的降解,减少农作物中的农药残留量,本研究归纳了农药降解的方法,主要包括光解、化学降解和生物降解,分析了各种农药降解方法的优点和缺点,总结了外源物质(农药安全剂、油菜素内酯、褪黑素)促进农作物体内农药降解的途径及机理。指出了寡糖降低作物中农药残留的作用以及可能的机理,提出了关于促进农作物体内农药降解研究方面存在的一些问题以及建议。期望对降低农作物中农药残留有积极作用,对农业具有指导作用。
中图分类号:
王岩, 彭强, 赵小明, 尹恒. 生物降解农药残留的研究进展[J]. 中国农学通报, 2021, 37(18): 117-124.
Wang Yan, Peng Qiang, Zhao Xiaoming, Yin Heng. Pesticide Residues Biodegradation: Research Progress[J]. Chinese Agricultural Science Bulletin, 2021, 37(18): 117-124.
方法 | 优点 | 缺点 |
---|---|---|
光解 | 降解对象范围广,降解能力稳定,不会对环境造成二次污染 | 未能实现产品具有光谱适用性,不适用于田间 |
氧化降解 | 准确破坏相应化学键 | 有副产物,降解效果不好,造成二次污染 |
水解 | 酸碱条件下都可发生 | 只对菊酯类农药降解效果明显,受pH影响严重 |
微生物降解 | 应用前景广泛 | 生物处理效果不稳定,影响因素多,降解不完全 |
酶降解 | 对农药专一性要求不高,使用方便,安全无毒、无副作用、 无残留和二次污染 | 酶的生产、储藏及应用成本太高,较难大规模 应用于农业生产 |
方法 | 优点 | 缺点 |
---|---|---|
光解 | 降解对象范围广,降解能力稳定,不会对环境造成二次污染 | 未能实现产品具有光谱适用性,不适用于田间 |
氧化降解 | 准确破坏相应化学键 | 有副产物,降解效果不好,造成二次污染 |
水解 | 酸碱条件下都可发生 | 只对菊酯类农药降解效果明显,受pH影响严重 |
微生物降解 | 应用前景广泛 | 生物处理效果不稳定,影响因素多,降解不完全 |
酶降解 | 对农药专一性要求不高,使用方便,安全无毒、无副作用、 无残留和二次污染 | 酶的生产、储藏及应用成本太高,较难大规模 应用于农业生产 |
Gene ID | Increased Ratio | best hit | Function |
---|---|---|---|
B006A051 | 2.122 | AO42111 | cytochrome P450 |
B245B011 | 2.064 | AM20426 | glycosyl transferase |
B259C091 | 2.020 | AM98207 | ABC transporter family protein |
B045H091 | 2.169 | AY072466 | glutathione S-transferase |
Gene ID | Increased Ratio | best hit | Function |
---|---|---|---|
B006A051 | 2.122 | AO42111 | cytochrome P450 |
B245B011 | 2.064 | AM20426 | glycosyl transferase |
B259C091 | 2.020 | AM98207 | ABC transporter family protein |
B045H091 | 2.169 | AY072466 | glutathione S-transferase |
[1] | 郑永权. 农药残留研究进展与展望[J]. 植物保护, 2013,39(05):90-98. |
[2] |
Zolgharnein J, Shahmoradi A H, Ghasemi J. Pesticides Removal Using Conventional and Low-Cost Adsorbents: A Review[J]. Clean-Soil Air Water, 2011,39(12):1105-1119.
doi: 10.1002/clen.v39.12 URL |
[3] | Ahmadi-Mamaqani Y, Khorasani N, Talebi K, et al. Diazinon Fate and Toxicity in the Tajan River (Iran) Ecosystem[J]. Environmental Engineering ence, 2011,28(12):859-868. |
[4] | Bishnu A, Chakraborty A, Chakrabarti K, et al. Ethion degradation and its correlation with microbial and biochemical parameters of tea soils[J]. Biology & Fertility of Soils, 2012,48(1):19-29. |
[5] | Ni Y, Zheng J, Zhang J, et al. Isolation of Chloracetanilide Herbicides-degrading Bacterium Y3B-1 and Its Degradability to Chloracetanilide Herbicides[J]. Chinese Journal of Applied and Environmental Biology, 2011,17(5):711-716. |
[6] |
Lu P, Jin L, Liang B, et al. Study of Biochemical Pathway and Enzyme Involved in Metsulfuron-Methyl Degradation by Ancylobacter sp. XJ-412-1 Isolated from Soil[J]. Current Microbiology, 2011,62(6):1718-1725.
doi: 10.1007/s00284-011-9919-z URL |
[7] | Vincenzo A, Marianna B, Vittorio L, et al. Overview on oxidation mechanisms of organic compounds by TiO2 in heterogeneous photocatalysis[J]. Journal of Photochemistry &Photobiology, C: Photochemistry Reviews, 2012,13(3):224-245. |
[8] |
Daniela V Š, Dejan Z O, Dragana D. Četojević-Simin, Abramović., et al. Kinetics and the mechanism of the photocatalytic degradation of mesotrione in aqueous suspension and toxicity of its degradation mixtures[J]. Journal of Molecular Catalysis. A, Chemical, 2014,392:67-75.
doi: 10.1016/j.molcata.2014.04.033 URL |
[9] | 刘津伶, 马利民, 李卫卫. 4种有机农药在水中的光降解对比研究[J]. 四川环境, 2019,38(1):29-35. |
[10] | Marie S, Pascal W W C, Moursalou K, et al. Clay and Soil Photolysis of the Pesticides Mesotrione and Metsulfuron Methyl[J]. Applied Environmental Soil Science, 2014,2014:1-8. |
[11] | 徐慧, 蒋栋磊, 张银志, 等. 臭氧降解8种蔬菜中农药残留研究[J]. 食品工业科技, 2012,33(22):75-77. |
[12] | 朴秀英, 姜辉, 陶传江, 等. 单嘧磺酯水解及在水中的光解研究[J]. 农药学学报, 2012,14(3):315-320. |
[13] | 汤涛, 张昌朋, 吴珉, 等. 异唑草酮水解及在水中的光解[J]. 江苏农业科学, 2019,47(3):249-252. |
[14] | 张锡贞, 张红雨. 生物农药的应用与研发现状[J]. 山东理工大学学报:自然科学版, 2004(1):96-100. |
[15] | 汤鸣强, 田盼, 尤民生. 氰戊菊酯降解菌FDB的分离鉴定及其生长特性[J]. 微生物学通报, 2010(05):61-67. |
[16] | 刘祎丹, 王洋洋. 微生物降解有机氯农药研究[J]. 河南农业, 2019(11):34-35. |
[17] | 邝凡, 张宁, 胡威. 微生物降解新烟碱类农药研究进展[J]. 赣南师范大学学报, 2019,40(03):85-89. |
[18] | 刘绍雄, 李建英, 刘春丽, 等. 平菇漆酶对农药六六六降解作用研究[J]. 中国食用菌, 2018(5):66-69. |
[19] | 高熳熳, 白俊岩, 孙磊, 等. 有机磷水解酶对不同有机磷农药降解功效的评价[J]. 江苏农业科学, 2019,47(08):217-220. |
[20] | Chekan J R, Ongpipattanakul C, Wright Terry R, et al. Molecular basis for enantioselective herbicide degradation imparted by aryloxyalkanoate dioxygenases in transgenic plants.[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019,116(27):13299-13304. |
[21] |
Pan L, Yu Q, Han H P, Mao L F, et al. Aldo-keto Reductase Metabolizes Glyphosate and Confers Glyphosate Resistance in Echinochloa colona[J]. Plant physiology, 2019,181(4):1519-1534.
doi: 10.1104/pp.19.00979 URL |
[22] |
Bello-Ramírez A M, Carreón-Garabito B Y, Nava-Ocampo A. A theoretical approach to the mechanism of biological oxidation of organophosphorus pesticides[J]. Toxicology, 2000,149(2-3):63-68.
pmid: 10967403 |
[23] |
Zhang Q, Xu F X, Lambert Kris N, et al. Safeners coordinately induce the expression of multiple proteins and MRP transcripts involved in herbicide metabolism and detoxification in Triticum tauschii seedling tissues.[J]. Proteomics, 2007,7(8):1261-1278.
pmid: 17380533 |
[24] |
Dixon D P, Skipsey M, Edwards R. Roles for glutathione transferases in plant secondary metabolism[J]. Phytochemistry, 2010,71(4):338-350.
doi: 10.1016/j.phytochem.2009.12.012 URL |
[25] |
Jiang Y P, Chen S C, Xia X J, et al. The different responses of glutathione-dependent detoxification pathway to fungicide chlorothalonil and carbendazim in tomato leaves[J]. Chemosphere, 2010,79(9):958-965.
doi: 10.1016/j.chemosphere.2010.02.020 URL |
[26] |
Brazier-Hicks M, Evans K M, Cunningham Oliver D, et al. Catabolism of glutathione conjugates in Arabidopsis thaliana. Role in metabolic reactivation of the herbicide safener fenclorim[J]. The Journal of biological chemistry, 2008,283(30):21102-21112.
doi: 10.1074/jbc.M801998200 URL |
[27] | Ertunç T, Schmidt B, Kühn H, et al. Investigation on the chemical structure of nonextractable residues of the fungicide cyprodinil in spring wheat using 13C-C1-phenyl-cyprodinil on 13 C-depleted plants-an alternative approach to investigate nonextractable residues[J]. Journal of environmental science andhealth. Part. B, Pesticides, food contaminants, and agricultural wastes, 2004,39(5-6):689-707. |
[28] |
Ohkama-Ohtsu N, Zhao P, Xiang C B, et al. Glutathione conjugates in the vacuole are degraded by gamma-glutamyl transpeptidase GGT3 in Arabidopsis[J]. The Plant journal for cell and molecular biology, 2007,49(5):878-888.
doi: 10.1111/tpj.2007.49.issue-5 URL |
[29] |
Tan J J, He S B, Yan S H, et al. Exogenous EDDS modifies copper-induced various toxic responses in rice[J]. Protoplasma, 2014,251(5):1213-1221.
doi: 10.1007/s00709-014-0628-x URL |
[30] |
Tabrez S, Ahmad M. Cytochrome P450 system as potential biomarkers of certain toxicants: comparison between plant and animal models[J]. Environmental monitoring and assessment, 2013,185(4):2977-2987.
doi: 10.1007/s10661-012-2765-z pmid: 22773083 |
[31] |
Powles S B, Yu Q. Evolution in action: plants resistant to herbicides[J]. Annual review of plant biology, 2010,61(1):317-347.
doi: 10.1146/annurev-arplant-042809-112119 URL |
[32] |
Wu P, Qin Z W, Wu T, et al. Proteomic Analysis of Cucumber Defense Rresponses Induced by Propamocarb[J]. Journal of Integrative Agriculture, 2013,12(11):2022-2035.
doi: 10.1016/S2095-3119(13)60370-6 URL |
[33] | Yoshihisa K, Masafumi H, Nobukazu S, et al. Unusual expression of an Arabidopsis ATP-binding cassette transporter ABCC11[J]. Plant Biote chnology, 2009,26(2):261-265. |
[34] |
Yin Y L, Zhou Y, Zhou Y H, et al. Interplay between mitogen-activated protein kinase and nitric oxide in brassinosteroid-induced pesticide metabolism in Solanum lycopersicum[J]. Journal of hazardous materials, 2016,316(Oct.5):221-231.
doi: 10.1016/j.jhazmat.2016.04.070 URL |
[35] | 金勇斌. 除草剂安全剂解草啶的合成研究[D]. 杭州: 浙江工业大学, 2005. |
[36] | 胡利锋, 刘小安, 孙兰, 等. 除草剂安全剂作用机理研究进展[J]. 农药学学报, 2017,19(02):152-161. |
[37] | 刘亚新, 金晨钟, 李静波. 除草剂安全剂的应用研究进展[J]. 现代农业科技, 2015(18):155-157. |
[38] | 陶波, 王禹堃, 李德萍, 等. 安全剂AD-67对精异丙甲草胺解毒效应研究[J]. 东北农业大学学报, 2019,50(01):29-35,51. |
[39] |
Taylor V L, Cummins I, Brazier-Hicks M, et al. Protective responses induced by herbicide safeners in wheat[J]. Environmental and experimental botany, 2013,88(C):93-99.
doi: 10.1016/j.envexpbot.2011.12.030 URL |
[40] |
Riechers D E, Kreuz K, Zhang Q. Detoxification without intoxication: herbicide safeners activate plant defense gene expression[J]. Plant physiology, 2010,153(1):3-13.
doi: 10.1104/pp.110.153601 pmid: 20237021 |
[41] |
Labrou N E, Papageorgiou A C, Pavli O, et al. Plant GSTome: structure and functional role in xenome network and plant stress response[J]. Current opinion in biotechnology, 2015,32:186-194.
doi: 10.1016/j.copbio.2014.12.024 URL |
[42] | Bajguz A, Hayat S. Effects of brassinosteroids on the plant responses to environmental stresses[J]. Plant physiology and biochemistry:PPB, 2009,47(1):1-8. |
[43] |
Xia X J, Wang Y J, Zhou Y H, et al. Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber[J]. Plant physiology, 2009,150(2):801-814.
doi: 10.1104/pp.109.138230 URL |
[44] |
Vanderauwera S, Zimmermann P, Rombauts S, et al. Genome-wide analysis of hydrogen peroxide-regulated gene expression in Arabidopsis reveals a high light-induced transcriptional cluster involved in anthocyanin biosynjournal[J]. Plant physiology, 2005,139(2):806-821.
doi: 10.1104/pp.105.065896 URL |
[45] |
Zhou Y H, Xia X J, Yu G B, et al. Brassinosteroids play a critical role in the regulation of pesticide metabolism in cropplants[J]. Scientific reports, 2015,5:9018.
doi: 10.1038/srep09018 URL |
[46] |
Mohammad H A, Emad G, Milad M, et al. Does the use of melatonin overcome drug resistance in cancer chemotherapy?[J]. Life Sciences, 2018,196:143-155.
doi: S0024-3205(18)30030-4 pmid: 29374563 |
[47] |
Sengodan K, Muthugoundar S S. The protective effect of melatonin against cypermethrin-induced oxidative stress damage in Spodoptera litura (Lepidoptera: Noctuidae[J]. Biological Rhythm Research, 2015,46(1):1-12.
doi: 10.1080/09291016.2013.870758 URL |
[48] |
Wang P, Yin L H, Liang D, et al. Delayed senescence of apple leaves by exogenous melatonin treatment: toward regulating the ascorbate-glutathione cycle[J]. Journal of pineal research, 2012,53(1):11-20.
doi: 10.1111/jpi.2012.53.issue-1 URL |
[49] |
Arnao M B, Hernández-Ruiz J. Melatonin: plant growth regulator and/or biostimulator during stress?[J]. Trends in plant science, 2014,19(12):789-797.
doi: 10.1016/j.tplants.2014.07.006 URL |
[50] |
Zuo B X, Zheng X D, He P L, et al. Overexpression of MzASMT improves melatonin prod uction and enhances drought tolerance in transgenic Arabidopsis thaliana plants[J]. Journal of pineal research, 2014,57(4):408-417.
doi: 10.1111/jpi.12180 URL |
[51] |
Park S, Lee Da-Eun, Jang H, et al. Melatonin-rich transgenic rice plants exhibit resistance to herbicide-induced oxidative stress[J]. Journal of pineal research, 2013,54(3):258-263.
doi: 10.1111/jpi.2013.54.issue-3 URL |
[52] |
Wang L, Zhao Y, Reiter Russel J, et al. Changes in melatonin levels in transgenic 'Micro-Tom' tomato overexpressing ovine AANAT and ovine HIOMT genes[J]. Journal of pineal research, 2014,56(2):134-142.
doi: 10.1111/jpi.12105 pmid: 24138427 |
[53] |
Yan Y Y, Sun S S, Zhao N, et al. COMT1 overexpression resulting in increased melatonin biosynjournal contributes to the alleviation of carbendazim phytotoxicity and residues in tomato plants[J]. Environmental Pollution, 2019,252:51-61.
doi: 10.1016/j.envpol.2019.05.052 URL |
[54] |
Zhang C G, Prianka H, Liu T M, et al. Alginate Oligosaccharide (AOS) induced resistance to Pst DC3-000 via salicylic acid-mediated signaling pathway in Arabidopsis thaliana[J]. Carbohydrate Polymers, 2019,225:115221.
doi: 10.1016/j.carbpol.2019.115221 URL |
[55] | 陆建玲, 孙达峰, 张超, 等. 壳寡糖对辣椒种子萌发及幼苗抗氧化酶活性影响研究[J]. 中国野生植物资源, 2012,31(02):12-16. |
[56] | 商文静, 吴云锋, 赵小明, 等. 壳寡糖诱导烟草防御酶系活性变化及PR-1a基因表达研究[J]. 植物病理学报, 2010,40(01):99-102. |
[57] | 孙敏秀, 王丽丽, 杨锐, 等. 琼胶寡糖对黄瓜抗性及啶虫脒残留的影响[J]. 核农学报, 2019(11):199-205. |
[58] | 吴凡. 基于公共数据库的拟南芥P450s表达谱分析及除草剂代谢相关P450筛选[D]. 大连: 中国科学院大学, 2018. |
[1] | 武迪, 张锋, 隋春莹, 师君慧, 万雪洁, 刘义国, 韩伟, 师长海. 外源活性物质对小麦苗期抗逆性的影响[J]. 中国农学通报, 2022, 38(9): 14-19. |
[2] | 强生军, 刘玉荣, 李刚. 溶剂标、基质标对农药残留检测结果的影响及校正[J]. 中国农学通报, 2022, 38(4): 99-106. |
[3] | 王敬东, 惠建, 白海波, 马斯霜, 李树华. 水稻萌发和幼苗生长对外源物质调节的响应[J]. 中国农学通报, 2022, 38(29): 1-7. |
[4] | 卢珍萍, 田英. 中国蔬果中农药残留的现状及其去除方法[J]. 中国农学通报, 2022, 38(24): 131-137. |
[5] | 虞凤慧, 成道泉, 王祥传, 周倩, 吴文雷, 张骞, 杨传伦, 韩立霞, 吴磊, 刘海玉, 徐泽平. 壳寡糖锌对温室番茄的防病效果及果实品质和产量的影响[J]. 中国农学通报, 2021, 37(9): 42-48. |
[6] | 陈锋, 孟顺龙, 陈家长. 农药在沉积物-水-生物体的污染特征综述[J]. 中国农学通报, 2021, 37(7): 159-164. |
[7] | 王东鹏, 叶诚, 廖小丽. 微流控芯片在农产品安全检测中的应用[J]. 中国农学通报, 2021, 37(36): 148-154. |
[8] | 刘琳, 马腾飞, 贾孙悦, 周芹, 王皙玮. 改良QuEChERS方法结合气相色谱测定红甜菜中20种农药残留[J]. 中国农学通报, 2021, 37(35): 110-117. |
[9] | 田耿智. 基地蔬菜水果中农药残留暴露风险和预警风险评估[J]. 中国农学通报, 2021, 37(27): 112-116. |
[10] | 郭思依, 孙明娜, 董旭, 褚玥, 童舟, 王梅, 高同春, 段劲生. 免疫分析技术在农药残留快速检测中的应用及研究进展[J]. 中国农学通报, 2021, 37(23): 106-112. |
[11] | 翟杨, 刘武, 刘彬, 谭汝晴, 刘上寿, 吴念庆, 杨美森, 曾粮斌. 3种药剂及其复配使用对山银花白粉病的防效初报[J]. 中国农学通报, 2021, 37(22): 116-119. |
[12] | 于婷婷, 邱鹏程, 陈强, 石富, 杨雅钧. 气相色谱法测定蔬菜和水果中有机磷及拟除虫菊酯类农药残留不确定度分析[J]. 中国农学通报, 2021, 37(17): 129-136. |
[13] | 纪力, 邵文奇, 陈富平, 董青君, 章安康. 连年规模稻鸭共养对稻田土壤性状、稻米产量及品质的影响[J]. 中国农学通报, 2021, 37(13): 1-7. |
[14] | 溥丽华, 郎小琴, 穆志国, 赵云, 吴常敏, 吴敏, 张建利. 贵阳城市周边蔬菜规模化种植农药残留风险分析——以贵阳市某区为例[J]. 中国农学通报, 2020, 36(9): 145-149. |
[15] | 丁怡, 李荣玉, 刘世江, 赵琪君. 高效液相色谱法测定茶叶中的5种农药残留[J]. 中国农学通报, 2020, 36(29): 132-138. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||