中国农学通报 ›› 2021, Vol. 37 ›› Issue (27): 90-99.doi: 10.11924/j.issn.1000-6850.casb2020-0859
所属专题: 油料作物
杨淼泠1(), 张维1, 韦秋合1, 施李鸣1, 国圆2, 张克诚1, 葛蓓孛1(
)
收稿日期:
2021-01-04
修回日期:
2021-05-11
出版日期:
2021-09-25
发布日期:
2021-10-28
通讯作者:
葛蓓孛
作者简介:
杨淼泠,女,1997年出生,山东淄博人,硕士,研究方向:植物病害生物防治学。通信地址:100193 北京市海淀区马连洼街道圆明园西路2号 中国农业科学院植物保护研究所,Tel:010-62813680,E-mail: 基金资助:
Yang Miaoling1(), Zhang Wei1, Wei Qiuhe1, Shi Liming1, Guo Yuan2, Zhang Kecheng1, Ge Beibei1(
)
Received:
2021-01-04
Revised:
2021-05-11
Online:
2021-09-25
Published:
2021-10-28
Contact:
Ge Beibei
摘要:
由核盘菌(Sclerotinia sclerotiorum (Lib.) de Bary)引起的大豆菌核病是一种世界性分布的重要病害,严重威胁大豆产业的安全生产和发展。为了更有效地预防和控制大豆菌核病的发生和发展,本文归纳了大豆菌核病的病原生物学特性、病害循环、致病机理、抗病育种以及综合防治等方面的最新研究,指出了深入挖掘优良抗性资源并探究大豆-核盘菌的互作机制,为后期开发高效的综合防治技术奠定基础。
中图分类号:
杨淼泠, 张维, 韦秋合, 施李鸣, 国圆, 张克诚, 葛蓓孛. 大豆菌核病研究进展[J]. 中国农学通报, 2021, 37(27): 90-99.
Yang Miaoling, Zhang Wei, Wei Qiuhe, Shi Liming, Guo Yuan, Zhang Kecheng, Ge Beibei. Sclerotinia Stem Rot of Soybean: A Review[J]. Chinese Agricultural Science Bulletin, 2021, 37(27): 90-99.
基因名称 | 基因号 | 主要功能 | 参考文献 |
---|---|---|---|
Ssv263 | SS1G_00263 | 致病性 | [ |
SsCVNH | SS1G_02904 | 致病性;菌核发育 | [ |
Ss_Bil | SS1G_05839 | 致病性;菌丝生长发育 | [ |
SsPemG1 | SS1G_07345 | 致病性; | [ |
SsNACα | SS1G_05284 | 致病性;菌核发育 | [ |
SsSSVP1 | SS1G_02068 | 致病性;诱导植物细胞凋亡 | [ |
SsCP1 | SS1G_10096 | 致病性;诱导植物细胞凋亡;抑制寄主防御反应 | [ |
SsSm1 | SS1G_10096 | 致病性;菌丝生长;菌核形成;诱导植物细胞凋亡 | [ |
Ss_Rbs1 | SS1G_07404 | 致病性;菌核形成;侵染垫形成 | [ |
SsCFEM1 | SS1G_07295 | 致病性;侵染垫发育 | [ |
SsCdc28 | SS1G_02296 | 致病性;菌丝生长发育 | [ |
Sszfh1 | SS1G_06044 | 致病性;菌丝生长发育;调控胁迫应答 | [ |
Ssgar2 | SS1G_00736 | 致病性;耐盐性;维持细胞壁稳定性 | [ |
Sslga1 | SS1G_12905 | 致病性;耐盐性 | [ |
Sslgd1 | SS1G_00738 | 致病性;耐盐性 | [ |
SsNE2 | SS1G_00849 | 致病性;诱导植物坏死 | [ |
基因名称 | 基因号 | 主要功能 | 参考文献 |
---|---|---|---|
Ssv263 | SS1G_00263 | 致病性 | [ |
SsCVNH | SS1G_02904 | 致病性;菌核发育 | [ |
Ss_Bil | SS1G_05839 | 致病性;菌丝生长发育 | [ |
SsPemG1 | SS1G_07345 | 致病性; | [ |
SsNACα | SS1G_05284 | 致病性;菌核发育 | [ |
SsSSVP1 | SS1G_02068 | 致病性;诱导植物细胞凋亡 | [ |
SsCP1 | SS1G_10096 | 致病性;诱导植物细胞凋亡;抑制寄主防御反应 | [ |
SsSm1 | SS1G_10096 | 致病性;菌丝生长;菌核形成;诱导植物细胞凋亡 | [ |
Ss_Rbs1 | SS1G_07404 | 致病性;菌核形成;侵染垫形成 | [ |
SsCFEM1 | SS1G_07295 | 致病性;侵染垫发育 | [ |
SsCdc28 | SS1G_02296 | 致病性;菌丝生长发育 | [ |
Sszfh1 | SS1G_06044 | 致病性;菌丝生长发育;调控胁迫应答 | [ |
Ssgar2 | SS1G_00736 | 致病性;耐盐性;维持细胞壁稳定性 | [ |
Sslga1 | SS1G_12905 | 致病性;耐盐性 | [ |
Sslgd1 | SS1G_00738 | 致病性;耐盐性 | [ |
SsNE2 | SS1G_00849 | 致病性;诱导植物坏死 | [ |
[1] | 韩天富. 中国大豆增产的潜力与路径探讨[J]. 中国畜牧兽医报, 2020, 11(1):001. |
[2] | 叶文武, 郑小波, 王源超. 大豆根腐病监测与防控关键技术研究进展[J]. 大豆科学, 2020, 39(5):804-809. |
[3] | 李易初. 黑龙江大豆菌核病菌生物学特性、融合群及遗传多样性研究[D]. 哈尔滨:东北农业大学, 2014. |
[4] | 张军政. 黑龙江省大豆核盘菌生物学特性和生物防治的研究[D]. 哈尔滨:哈尔滨工业大学, 2009. |
[5] | Libert M A. Plante crytogamicae arduennae (exsiccati) no. 326[J]. Published by the author,1837. |
[6] |
Purdy L H. Sclerotinia sclerotiorum: history, diseases and symptomatology, host range, geographic distribution, and impact[J]. Phytopathology, 1979, 69(8):875-880.
doi: 10.1094/Phyto-69-875 URL |
[7] |
Whetzel H H. A synopsis of the genera and species of the sclerotiniaceae, a family of stromatic inoperculate discomycetes[J]. Mycologia, 1945, 37(6):648-714.
doi: 10.2307/3755132 URL |
[8] |
Dumont K P, Korf R P. Sclerotiniaceae. Generic nomenclature[J]. Mycologia, 1971, 63(1):157-168.
doi: 10.2307/3757696 URL |
[9] |
Holst-Jensen A, Kohn L M, Schumacher T. Nuclear rdna phylogeny of the sclerotiniaceae[J]. Mycologia, 1997, 89(6):885-899.
doi: 10.2307/3761109 URL |
[10] | 张霞, 金燕. 大豆常见病害症状识别与防治[J]. 现代农业科技, 2008(24):133-136. |
[11] |
Williams B, Kabbage M, Kim H J, et al. Tipping the balance: Sclerotinia sclerotiorum secreted oxalic acid suppresses host defenses by manipulating the host redox environment[J]. Plos Pathogens, 2011, 7(6):e1002107-e1002107.
doi: 10.1371/journal.ppat.1002107 URL |
[12] |
Bolton M D, Thomma B P, Nelson B D. Sclerotinia sclerotiorum (Lib.) de bary: Biology and molecular traits of a cosmopolitan pathogen[J]. Molecular Plant Pathology, 2006, 7(1):1-16.
doi: 10.1111/mpp.2006.7.issue-1 URL |
[13] |
Li M, Rollins J A. The development-specific protein (SSP1) from Sclerotinia sclerotiorum is encoded by a novel gene expressed exclusively in sclerotium tissues[J]. Mycologia, 2009, 101(1):34-43.
doi: 10.3852/08-114 URL |
[14] |
Erental A, Dickman M B, Yarden O. Sclerotial development in Sclerotinia sclerotiorum: Awakening molecular analysis of a "dormant" structure[J]. Fungal Biology Reviews, 2008, 22(1):6-16.
doi: 10.1016/j.fbr.2007.10.001 URL |
[15] |
Georgiou C D, Pjnatsoukis N, Zervoudakis P G. Sclerotial metamorphosis in filamentous fungi is induced by oxidative stress[J]. Integrative and Comparative Biology, 2006, 46(6):691-712.
doi: 10.1093/icb/icj034 URL |
[16] |
Papapostolou I, Georgiou C D. Hydrogen peroxide is involved in the sclerotial differentiation of filamentous phytopathogenic fungi[J]. Journal of Applied Microbiology, 2010, 109(6):1929-1936.
doi: 10.1111/j.1365-2672.2010.04822.x pmid: 20681971 |
[17] |
Chet I, Henis Y. Sclerotial morphogenesis in fungi[J]. Annual Review of Phytopathology, 1975, 13(1):169-192.
doi: 10.1146/phyto.1975.13.issue-1 URL |
[18] |
Tourneau D L. Morphology, cytology, and physiology of sclerotinia species in culture[J]. Phytopathology, 1979, 69(8):887-890.
doi: 10.1094/Phyto-69-887 URL |
[19] |
Willets H J, Bullock S. Developmental biology of sclerotia[J]. Mycological Research, 1992, 96:801-816.
doi: 10.1016/S0953-7562(09)81027-7 URL |
[20] |
Rollins J A Dickman M B. pH signaling in Sclerotinia sclerotiorum: identification of a PACC/RIM1 homolog[J]. Applied and Environmental Microbiology, 2001, 67(1):75-81.
pmid: 11133430 |
[21] |
Dickman M B, Park Y K, Oltersdorf T, et al. Abrogation of disease development in plants expressing animal antiapoptotic genes[J]. Proceedings of the National Academy of Sciences, 2001, 98(12):6957-6962.
doi: 10.1073/pnas.091108998 URL |
[22] |
Wayne I I, Dickman M B, Rollins J A. Characterization and functional analysis of a camp-dependent protein kinase a catalytic subunit gene (PKA1) in Sclerotinia sclerotiorum[J]. Physiological and Molecular Plant Pathology, 2004, 64(3):155-163.
doi: 10.1016/j.pmpp.2004.07.004 URL |
[23] |
Erental A, Harel A, Yarden O. Type 2a phosphoprotein phosphatase is required for asexual development and pathogenesis of Sclerotinia sclerotiorum[J]. Molecular Plant-Microbe Interactions, 2007, 20(8):944-954.
pmid: 17722698 |
[24] |
Rollins J A. The Sclerotinia sclerotiorum PAC1 gene is required for sclerotial development and virulence[J]. Molecular Plant-Microbe Interactions, 2003, 16(9):785-795.
doi: 10.1094/MPMI.2003.16.9.785 URL |
[25] |
Liang Y, Xiong W, Steinkellner S, et al. Deficiency of the melanin biosynjournal genes SCD1 and thr1 affects sclerotial development and vegetative growth, but not pathogenicity, in Sclerotinia sclerotiorum[J]. Molecular Plant Pathology, 2018, 19(6):1444-1453.
doi: 10.1111/mpp.12627 pmid: 29024255 |
[26] |
Qu X, Yu B, Liu J, et al. Mads-box transcription factor SsMAD is involved in regulating growth and virulence in Sclerotinia sclerotiorum[J]. International Journal of Molecular Sciences, 2014, 15(5):8049-8062.
doi: 10.3390/ijms15058049 URL |
[27] |
Fan H, Yu G, Liu Y, et al. An atypical forkhead-containing transcription factor ssfkh1 is involved in sclerotial formation and is essential for pathogenicity in Sclerotinia sclerotiorum[J]. Molecular Plant Pathology, 2017, 18(7):963-975.
doi: 10.1111/mpp.2017.18.issue-7 URL |
[28] | 母红岩. 核盘菌菌核的菌丝型萌发与侵染特性研究[D]. 武汉:华中农业大学, 2017. |
[29] |
Bolton M D Thomma B P H J Nelson B D. Sclerotinia sclerotiorum (Lib.) de bary: biology and molecular traits of a cosmopolitan pathogen[J]. Molecular Plant Pathology, 2006, 7(1):1-16.
doi: 10.1111/mpp.2006.7.issue-1 URL |
[30] | 杨谦. 张翼鹏. 核盘菌子囊盘形成的影响因子[J]. 东北林业大学学报, 1995(2):126-130. |
[31] |
Nepal A, Mendoza L E D R. Effect of sclerotial water content on carpogenic germination of Sclerotinia sclerotiorum[J]. Plant Disease, 2012, 96(9):1315-1322.
doi: 10.1094/PDIS-10-11-0889-RE URL |
[32] | Huang H C, Kozub G C. Germination of immature and mature sclerotia of Sclerotinia sclerotiorum[J]. Botanical Bulletin of Academia Sinica, 1994, 35:243-247. |
Krager W. The effect of environmental factors on the development of apothecia and ascospores of the rape stalk-break pathogen Sclerotinia sclerotiorum (Lib). de Bary[J]. Zeitschrift fur Pflanzenkrankheiten and Pflanzenschutz, 1975, 82:101-108. | |
[34] | 董全中. 大豆菌核病的发生规律及综合防治[J]. 大豆通报, 2003(3):13. |
[35] |
Adams P, Ayers W. Ecology of sclerotinia species[J]. Phytopathology, 1979, 69(8):896-899.
doi: 10.1094/Phyto-69-896 URL |
[36] |
David B, Evzenie P, Jiri S, et al. Use of petal test in early-flowering varieties of oilseed rape (Brassica napus L.) for predicting the infection pressure of Sclerotinia sclerotiorum(Lib.) de bary[J]. Crop Protection, 2016, 80:127-131.
doi: 10.1016/j.cropro.2015.11.006 URL |
[37] | 王爱印. 桑椹菌核病病原菌的分离、鉴定及其拮抗性桑树内生菌的研究[D]. 重庆:西南大学, 2016. |
[38] |
Abawi G, Grogan R. Epidemiology of diseases caused by sclerotinia species[J]. Phytopathology, 1979, 69(8):899-904.
doi: 10.1094/Phyto-69-899 URL |
[39] | Inglis G D, Boland G J. The microflora of bean and rapeseed petals and the influence of the microflora of bean petals on white mold[J]. Canadian Journal of Plant Pathology, 1990(2):129-134. |
[40] |
Young C, Werner C. Infection routes for Sclerotinia sclerotiorum in apetalous and fully petalled winter oilseed rape[J]. Plant Pathology, 2012, 61(4):730-738.
doi: 10.1111/ppa.2012.61.issue-4 URL |
[41] | 楊新美. 油菜菌核病(Sclerotinia sclerotiorum)在中国的寄主范围及生态特性的调查研究[J]. 植物病理学报, 1959(2):111-122. |
[42] |
Boland G, Hall R. Index of plant hosts of Sclerotinia sclerotiorum[J]. Canadian Journal of Plant Pathology, 1994, 16(2):93-108.
doi: 10.1080/07060669409500766 URL |
[43] |
Bardin S, Huang H. Research on biology and control of sclerotinia diseases in canada1[J]. Canadian Journal of Plant Pathology, 2001, 23(1):88-98.
doi: 10.1080/07060660109506914 URL |
[44] |
Liang X, Rollins J A. Mechanisms of broad host range necrotrophic pathogenesis in Sclerotinia sclerotiorum[J]. Phytopathology, 2018, 108(10):1128-1140.
doi: 10.1094/PHYTO-06-18-0197-RVW URL |
[45] |
Li M, Liang X, Rollins J A. Sclerotinia sclerotiorum γ-glutamyl transpeptidase (Ss-ggt1) is required for regulating glutathione accumulation and development of sclerotia and compound appressoria[J]. Molecular Plant-Microbe Interactions, 2012, 25(3):412-420.
doi: 10.1094/MPMI-06-11-0159 URL |
[46] |
Xiao X, Xie J, Cheng J, et al. Novel secretory protein Ss-caf1 of the plant-pathogenic fungus Sclerotinia sclerotiorum is required for host penetration and normal sclerotial development[J]. Molecular Plant-Microbe Interactions, 2014, 27(1):40-55.
doi: 10.1094/MPMI-05-13-0145-R URL |
[47] |
Liang X, Moomaw E W, Rollins J A. Fungal oxalate decarboxylase activity contributes to Sclerotinia sclerotiorum early infection by affecting both compound appressoria development and function[J]. Molecular Plant Pathology, 2015, 16(8):825-836.
doi: 10.1111/mpp.2015.16.issue-8 URL |
[48] |
Yu Y, Xiao J, Zhu W, et al. Ss-rhs1, a secretory rhs repeat-containing protein, is required for the virulence of Sclerotinia sclerotiorum[J]. Molecular Plant Pathology, 2017, 18(8):1052-1061.
doi: 10.1111/mpp.2017.18.issue-8 URL |
[49] | 刘玲. GATA转录因子在核盘菌生长发育和致病过程的功能研究[D]. 吉林:吉林大学, 2019. |
[50] |
Amselem J Cuomo C A van Kan J A, et al. Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and botrytis cinerea[J]. PLoS Genet, 2011, 7(8):e1002230.
doi: 10.1371/journal.pgen.1002230 URL |
[51] |
Derbyshire M, Denton-Giles M, Hegedus D, et al. The complete genome sequence of the phytopathogenic fungus Sclerotinia sclerotiorum reveals insights into the genome architecture of broad host range pathogens[J]. Genome Biology and Evolution, 2017, 9(3):593-618.
doi: 10.1093/gbe/evx030 pmid: 28204478 |
[52] |
Seifbarghi S, Borhan M H, Wei Y, et al. Changes in the Sclerotinia sclerotiorum transcriptome during infection of brassica napus[J]. BMC Genomics, 2017, 18(1):266.
doi: 10.1186/s12864-017-3642-5 pmid: 28356071 |
[53] | 羊国根, 程家森. 核盘菌致病机理研究进展[J]. 生物技术通报, 2018, 34(4):9-15. |
[54] |
Oliveira M B, de Andrade R V, Grossi-de-Sá M F, et al. Analysis of genes that are differentially expressed during the Sclerotinia sclerotiorum phaseolus vulgaris interaction[J]. Frontiers in Microbiology, 2015, 6:1162.
doi: 10.3389/fmicb.2015.01162 pmid: 26579080 |
[55] |
Bashi Z D, Rimmer S R, Khachatourians G G, et al. Factors governing the regulation of Sclerotinia sclerotiorum cutinase a and polygalacturonase 1 during different stages of infection[J]. Canadian Journal of Microbiology, 2012, 58(5):605-616.
doi: 10.1139/w2012-031 URL |
[56] | Bateman D. An induced mechanism of tissue resistance to polygalacturonase in rhizoctonia-infected hypocotyls of bean[J]. Phytopathology, 1964, 54(4):438-445. |
[57] |
Liang X, Liberti D, Li M, et al. Oxaloacetate acetylhydrolase gene mutants of Sclerotinia sclerotiorum do not accumulate oxalic acid, but do produce limited lesions on host plants[J]. Molecular Plant Pathology, 2015, 16(6):559-571.
doi: 10.1111/mpp.2015.16.issue-6 URL |
[58] |
Chen C, Harel A, Gorovoits R, et al. Mapk regulation of sclerotial development in Sclerotinia sclerotiorum is linked with pH and camp sensing[J]. Molecular Plant-Microbe Interactions, 2004, 17(4):404-413.
doi: 10.1094/MPMI.2004.17.4.404 URL |
[59] |
Jeffrey A R, Martin B D. Increase in endogenous and exogenous cyclic AMP levels inhibits sclerotial development in Sclerotinia sclerotiorum[J]. Applied and Environmental Microbiology, 1998, 64(7):2539-2539.
doi: 10.1128/AEM.64.7.2539-2544.1998 URL |
[60] |
Cessna S G, Sears V E, Dickman M B, et al. Oxalic acid, a pathogenicity factor for Sclerotinia sclerotiorum, suppresses the oxidative burst of the host plant[J]. The Plant Cell, 2000, 12(11):2191-2199.
doi: 10.1105/tpc.12.11.2191 URL |
[61] |
Novaes M I C, Debona D, Fagundes-Nacarath I R F, et al. Physiological and biochemical responses of soybean to white mold affected by manganese phosphite and fluazinam[J]. Acta Physiologiae Plantarum, 2019, 41(12):186.
doi: 10.1007/s11738-019-2976-9 URL |
[62] |
Fagundes-Nacarath I R F, Debona D, Rodrigues F A. Oxalic acid-mediated biochemical and physiological changes in the common bean Sclerotinia sclerotiorum interaction[J]. Plant Physiology Biochemistry, 2018, 129:109-121.
doi: 10.1016/j.plaphy.2018.05.028 URL |
[63] |
Xu L, Li G, Jiang D, et al. Sclerotinia sclerotiorum: An evaluation of virulence theories[J]. Annual Review of Phytopathology, 2018, 56:311-338.
doi: 10.1146/phyto.2018.56.issue-1 URL |
[64] |
Kabbage M, Yarden O, Dickman M B. Pathogenic attributes of Sclerotinia sclerotiorum: switching from a biotrophic to necrotrophic lifestyle[J]. Plant Science, 2015, 233:53-60.
doi: S0168-9452(14)00305-7 pmid: 25711813 |
[65] |
Liang Y, Yajima W, Davis M R, et al. Disruption of a gene encoding a hypothetical secreted protein from Sclerotinia sclerotiorum reduces its virulence on canola (Brassica napus)[J]. Canadian Journal of Plant Pathology, 2013, 35(1):46-55.
doi: 10.1080/07060661.2012.745904 URL |
[66] |
Lyu X, Shen C, Fu Y, et al. Comparative genomic and transcriptional analyses of the carbohydrate-active enzymes and secretomes of phytopathogenic fungi reveal their significant roles during infection and development[J]. Scientific reports, 2015, 5:15565.
doi: 10.1038/srep15565 URL |
[67] |
Yu Y, Xiao J, Yang Y, et al. Ss-Bi1 encodes a putative bax inhibitor-1 protein that is required for full virulence of Sclerotinia sclerotiorum[J]. Physiological and Molecular Plant Pathology, 2015, 90:115-122.
doi: 10.1016/j.pmpp.2015.04.005 URL |
[68] |
Pan Y, Xu Y, Li X, et al. Sspemg1 encodes an elicitor-homologous protein and regulates pathogenicity in Sclerotinia sclerotiorum[J]. Physiological and Molecular Plant Pathology, 2015, 92:70-78.
doi: 10.1016/j.pmpp.2015.08.010 URL |
[69] |
Gao Z, Li X, Guo M, et al. The nascent-polypeptide-associated complex alpha subunit regulates the polygalacturonases expression negatively and influences the pathogenicity of Sclerotinia sclerotiorum[J]. Mycologia, 2015, 107(6):1130-1137.
doi: 10.3852/14-250 URL |
[70] |
Lyu X, Shen C, Fu Y, et al. A small secreted virulence-related protein is essential for the necrotrophic interactions of Sclerotinia sclerotiorum with its host plants[J]. Plos Pathogens, 2016, 12(2):e1005435.
doi: 10.1371/journal.ppat.1005435 URL |
[71] | 羊国根. 核盘菌分泌蛋白Sscp1的功能研究[D]. 武汉:华中农业大学, 2017. |
[72] |
Pan Y, Wei J, Yao C, et al. Sssm1, a cerato-platanin family protein, is involved in the hyphal development and pathogenic process of Sclerotinia sclerotiorum[J]. Plant Science, 2018, 270:37-46.
doi: 10.1016/j.plantsci.2018.02.001 URL |
[73] | 纪旭. 核盘菌分泌蛋白SsCFEM1的功能研究[D]. 吉林:吉林大学, 2020. |
[74] | 张博雯. 核盘菌细胞分裂周期蛋白SsCDC28的功能研究[D]. 吉林:吉林大学, 2019. |
[75] | 吕兴明. 核盘菌C2H2型锌指蛋白SsZFH1的功能研究[D]. 吉林:吉林大学, 2019. |
[76] |
Wei W, Pierre-Pierre N, Peng H, et al. The d-galacturonic acid catabolic pathway genes differentially regulate virulence and salinity response in Sclerotinia sclerotiorum[J]. Fungal Genetics and Biology, 2020, 145:103482.
doi: 10.1016/j.fgb.2020.103482 pmid: 33137429 |
[77] |
Seifbarghi S, Borhan M H, Wei Y, et al. Receptor-like kinases bak1 and sobir1 are required for necrotizing activity of a novel group of Sclerotinia sclerotiorum necrosis-inducing effectors[J]. Frontiers in Plant Science, 2020, 11:1021.
doi: 10.3389/fpls.2020.01021 pmid: 32754179 |
[78] | 宋淑云, 晋齐鸣, 张伟, 等. 大豆菌核病菌的接种技术研究进展.见:中国植物保护学会2007年学术年会. 中国广西桂, 2007: 4. |
[79] |
Megan M C, Jaime W, Ashish R, et al. Development and evaluation of glycine max germplasm lines with quantitative resistance to Sclerotinia sclerotiorum[J]. Frontiers in Plant Science, 2017, 8:1495.
doi: 10.3389/fpls.2017.01495 URL |
[80] | Willbur J F, Ding S, Marks M E, et al. Comprehensive sclerotinia stem rot screening of soybean germplasm requires multiple isolates of Sclerotinia sclerotiorum[J]. Plant Disease, 2017, 7(16):1055. |
[81] | Ramkrishna K, Chen C Y, Grau C R, et al. Soybean resistance to white mold: Evaluation of soybean germplasm under different conditions and validation of QTL[J]. Front Plant, 2018, 9:505. |
[82] | 苗保河. 大豆品种资源抗菌核病鉴定[J]. 中国油料, 1994(03):67-68. |
[83] |
韩粉霞, 韩广振, 孙君明, 等. 44份大豆微核心种质抗菌核病鉴定与评价[J]. 作物学报, 2013, 39(10):1783-1790.
doi: 10.3724/SP.J.1006.2013.01783 |
[84] |
Huynh T T, Bastien M, Iquira E, et al. Identification of QTLs associated with partial resistance to white mold in soybean using field-based inoculation[J]. Crop Science, 2010, 50(3):969-979.
doi: 10.2135/cropsci2009.06.0311 URL |
[85] |
Li D, Sun M, Han Y, et al. Identification of QTL underlying soluble pigment content in soybean stems related to resistance to soybean white mold (Sclerotinia sclerotiorum)[J]. Euphytica, 2010, 172(1):49-57.
doi: 10.1007/s10681-009-0036-z URL |
[86] |
Zhao X, Han Y, Li Y, et al. Loci and candidate gene identification for resistance to Sclerotinia sclerotiorum in soybean (glycine max l. Merr.) via association and linkage maps[J]. Plant Journal for Cell and Molecular Biology, 2015, 82(2):245-255.
doi: 10.1111/tpj.2015.82.issue-2 URL |
[87] | 宋伟, 赵雪, 徐玲秀, 等. 大豆抗菌核病位点挖掘及一致性QTL分析[J]. 中国油料作物学报, 2017, 39(6):763-770. |
[88] | 张羽. 大豆抗菌核病的全基因组关联研究[J]. 华北农学报, 2020, 35(1):205-213. |
[89] |
Sun M, Jing Y, Zhao X, et al. Genome-wide association study of partial resistance to sclerotinia stem rot of cultivated soybean based on the detached leaf method[J]. PLoS One, 2020, 15(5):e0233366.
doi: 10.1371/journal.pone.0233366 URL |
[90] | 董祥柏. 葡萄糖氧化酶基因和草酸氧化酶基因在甘蓝型油菜中的表达研究[D]. 北京:中国农业科学院, 2004. |
[91] | 张宇航, 李永光, 王雪松, 等. 大豆Gm_GLP10基因的克隆及生物信息学分析[J]. 大豆科学, 2016, 35(3):388-393. |
[92] | 杨静, 赵倩倩, 牛陆, 等. 转盾壳霉Cmoxdc1基因增强大豆对菌核病抗性的研究[J]. 大豆科学, 2020, 181(5):73-80. |
[93] | 余涵. 盾壳霉胞外丝氨酸蛋白酶基因的克隆与功能研究[D]. 武汉:华中农业大学, 2016. |
[94] |
Willbur J, McCaghey M, Kabbage M, et al. An overview of the Sclerotinia sclerotiorum pathosystem in soybean: Impact, fungal biology, and current management strategies[J]. Tropical Plant Pathology, 2019, 44(1):3-11.
doi: 10.1007/s40858-018-0250-0 |
[95] |
Workneh F, Yang X B. Prevalence of sclerotinia stem rot of soybeans in the north-central united states in relation to tillage, climate, and latitudinal positions[J]. Phytopathology, 2000, 90(12):1375.
doi: 10.1094/PHYTO.2000.90.12.1375 pmid: 18943379 |
[96] | 徐彩龙, 韩天富, 吴存祥. 黄淮海麦茬大豆免耕覆秸精量播种栽培技术研究[J]. 大豆科学, 2018, 37(2):197-201. |
[97] | Jaime W, Megan M C, Mehdi K, et al. An overview of the Sclerotinia sclerotiorum pathosystem in soybean: Impact, fungal biology, and current management strategies[J]. Tropical Plant Pathology, 2018. |
[98] | Armenta Q A A, Mondaca E C, Sanchez M A A, et al. Efectividad de fungicidas convencionales y biorracionales sobre Sclerotinia sclerotiorum in vitro[J]. Revista Mexicana De Ciencias Pecuarias, 2015, 11(1):2149-2156. |
[99] |
Di Y L, Zhu Z Q, Lu X M, et al. Baseline sensitivity and efficacy of trifloxystrobin against Sclerotinia sclerotiorum[J]. Crop Protection, 2016, 87:31-36.
doi: 10.1016/j.cropro.2016.04.020 URL |
[100] |
Liang H J, Di Y L, Li J L, et al. Baseline sensitivity and control efficacy of fluazinam against Sclerotinia sclerotiorum[J]. European Journal of Plant Pathology, 2015, 142(4):1-9.
doi: 10.1007/s10658-014-0584-5 URL |
[101] | Peltier A J, Bradley C A, Chilvers M I, et al. Biology, yield loss and control of sclerotinia stem rot of soybean[J]. Journal of Integrated Pest Management,(2):B1-B7(7). |
[102] |
Huzar-Novakowiski J, Paul P A, Dorrance A E. Host resistance and chemical control for management of sclerotinia stem rot of soybean in ohio[J]. Phytopathology, 2017, 107(8):937-949.
doi: 10.1094/PHYTO-01-17-0030-R pmid: 28398874 |
[103] | 吴世峰, 亓晶. 大豆菌核病防治技术[J]. 大豆科技, 2011(4):61-62. |
[104] | 王娜. 大豆菌核病生防放线菌的分离与鉴定[D]. 吉林:吉林大学, 2013. |
[105] |
Sumida C H, Daniel J F, Araujod A P C, et al. Trichoderma asperelloides antagonism to nine Sclerotinia sclerotiorum strains and biological control of white mold disease in soybean plants[J]. Biocontrol Science and Technology, 2018, 28(2):142-156.
doi: 10.1080/09583157.2018.1430743 URL |
[106] | Sumida C H, Daniel J F S, Araujod A P C S, et al. Trichoderma asperelloides antagonism to nine Sclerotinia sclerotiorum strains and biological control of white mold disease in soybean plants[J]. Biocontrol Science and Technology. |
[107] | 张淑梅, 王玉霞, 王佳龙, 等. 枯草芽孢杆菌防治大豆菌核病效果初报[J]. 大豆通报, 2006(1):18-19. |
[108] | 葛优优, 刘晓瑜, 窦桂铭, 等. 内生链霉菌ssd49的抑菌活性和防病促生效果[J]. 生物技术通报, 2017, 33(6):121-127. |
[109] | 丁峰. 核盘菌DNA病毒SsHADV-1的基因功能和入侵机制研究[D]. 武汉:华中农业大, 2019. |
[110] | 王源超. 诱饵模式——病原菌致病的全新机制[J]. 南京农业大学学报, 2018, 41(1):1-2. |
[1] | 田艺心, 高凤菊, 曹鹏鹏, 高祺. 黄淮海夏大豆干物质积累、转运及产量对播期的响应特征[J]. 中国农学通报, 2022, 38(6): 20-25. |
[2] | 余忠浩, 周伟, 李志刚, 李资文, 贾娟霞, 周亚星. 2002—2021年内蒙古自治区大豆主要性状变化分析及综合评价[J]. 中国农学通报, 2022, 38(34): 14-21. |
[3] | 杨潇湘, 黄小琴, 张蕾, 张重梅, 鲜赟曦, 周西全, 刘勇. 生防菌盾壳霉对油菜根际土壤微生物群落结构的影响[J]. 中国农学通报, 2022, 38(32): 92-98. |
[4] | 汪欢欢, 杨琴, 蒲红梅, 何进, 程华, 韩敏, 赵学春, 王志伟, 金宝成. 照片样线法大豆植被覆盖度测量精度分析[J]. 中国农学通报, 2022, 38(32): 111-118. |
[5] | 朱喜霞, 郑玉珍, 王海红, 黄保, 平西栓, 刘天学, 赵霞, 李毓珍. 机械化条件下“豆玉”不同行距配置和减肥对作物产量及大豆光合特性的影响[J]. 中国农学通报, 2022, 38(29): 16-21. |
[6] | 李小艳, 倪畅, 刘旭. 不同防治方法对设施黄瓜根结线虫的防治效果[J]. 中国农学通报, 2022, 38(25): 130-133. |
[7] | 郭文, 代希茜, 莫楠, 张应青, 余晨, 田江, 耿智德, 李露. 东盟国家大豆种植及其大豆产品进出口结构分析[J]. 中国农学通报, 2022, 38(23): 156-164. |
[8] | 高中超, 孙磊, 王丽华, 杜春影, 张利国, 张久明, 王伟, 谷维. 土壤中不同含量Cd2+对大麻、大豆幼苗生育的影响[J]. 中国农学通报, 2022, 38(22): 89-92. |
[9] | 孙锡鹏, 李琪, 乔云发, 胡正华, 张徐莹, 刘园园. 增温及干旱对海伦地区大豆生长发育的影响[J]. 中国农学通报, 2022, 38(15): 27-33. |
[10] | 马文舟, 陈妍妍, 吴洪生, 王晓云, 孙倩, 丁军, 李妍慧, 刘政, 蔡云彤, 徐金益, 张金福, 殷文, 张绪美, 许建华. 利用热镀锌厂锌尘生产液体有机锌肥的研究[J]. 中国农学通报, 2022, 38(15): 91-97. |
[11] | 赵如皓, 丁俊男, 于少鹏, 王慧, 史传奇, 张志, 孟博. NaCl胁迫对野生大豆幼苗生理及叶绿素荧光特性的影响[J]. 中国农学通报, 2022, 38(14): 23-29. |
[12] | 蒋龙刚, 任燕利, 史建硕, 郭丽, 王丽英, 李若楠, 王平. 不同大豆品种产量与养分吸收差异性研究[J]. 中国农学通报, 2022, 38(10): 9-14. |
[13] | 赵晶晶, 周浓, 郑殿峰. 低温胁迫对大豆花期叶片蔗糖代谢及产量的影响[J]. 中国农学通报, 2021, 37(9): 1-8. |
[14] | 昝光敏, 张玲, 张延瑞, 盛英华, 周凯, 王贤智. 大豆籽粒脂肪酸组分气相色谱检测方法的建立[J]. 中国农学通报, 2021, 37(9): 118-124. |
[15] | 唐利忠, 谢宜芝, 孙小成, 欧阳国春, 雷干农, 李小红, 朱旺冲. 播种量和施肥量对南方春大豆产量形成和机收质量的影响[J]. 中国农学通报, 2021, 37(8): 1-7. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||