| [1] | GAO X H, TANG X Y, ZHAO K Y, et al.  Biogas production from anaerobic co-digestion of spent mushroom substrate with different livestock manure[J]. Energies, 2021, 14(3):570.  doi: 10.3390/en14030570    
																																					URL
 | 
																													
																						| [2] | NAJAFI B, FAIZOLLAHZADEH ARDABILI S, SHAMSHIRB AND S, et al.  Spent mushroom compost (SMC) as a source for biogas production in Iran[J]. Eng appl com fluid, 2019, 13(1):967-982. | 
																													
																						| [3] | LEONG Y K, MA T W, CHANG J S, et al.  Recent advances and future directions on the valorization of spent mushroom substrate (SMS): a review[J]. Bioresource technol, 2022, 344:126157.  doi: 10.1016/j.biortech.2021.126157    
																																					URL
 | 
																													
																						| [4] | XU S Y, WEI J K, XUE F Y, et al.  Microbial inoculation influences microbial communities and physicochemical properties during lettuce seedling using composted spent mushroom substrate[J]. Applied soil ecology, 2022, 174:104418.  doi: 10.1016/j.apsoil.2022.104418    
																																					URL
 | 
																													
																						| [5] | 李佳燕, 陈兰, 喻婕, 等. 生物炭制备方法及其应用的研究进展[J]. 广州化工, 2019, 47(7):22-24,33. | 
																													
																						| [6] | 吕宏虹, 宫艳艳, 唐景春, 等. 生物炭及其复合材料的制备与应用研究进展[J]. 农业环境科学学报, 2015, 34(8):1429-1440. | 
																													
																						| [7] | LENG L J, XIONG Q, YANG L H, et al.  An overview on engineering the surface area and porosity of biochar[J]. Sci total environ, 2021, 763:144204.  doi: 10.1016/j.scitotenv.2020.144204    
																																					URL
 | 
																													
																						| [8] | 霍丽丽, 姚宗路, 赵立欣, 等. 典型农业生物炭理化特性及产品质量评价[J]. 农业工程学报, 2019, 35(16):249-257. | 
																													
																						| [9] | WU H L, MOU J R, ZHOU L, et al.  Cloud cap-like, hierarchically porous carbon derived from mushroom as an excellent host cathode for high performance lithium-sulfur batteries[J]. Electrochimica acta, 2016, 212:1021-1030.  doi: 10.1016/j.electacta.2016.07.153    
																																					URL
 | 
																													
																						| [10] | 张翔, 张耿崚, 孙倩囡, 等. 蘑菇培养土生物炭堆肥化利用及其对水稻生长的影响[J]. 农业环境科学学报, 2014, 33(10):2036-2041. | 
																													
																						| [11] | 张然, 程红艳, 吴梦欣, 等. 不同处理菌糠对油菜生长及土壤理化性质的影响[J]. 吉林农业, 2017(4):76-79. | 
																													
																						| [12] | 卢建平, 卜进硕, 朱峰, 等. 松木层孔菌生物炭的制备及其对甲基橙的吸附性能[J]. 当代化工, 2021, 50(8):1867-1871. | 
																													
																						| [13] | LOU Z M, SUN Y, BIAN S P, et al.  Nutrient conservation during spent mushroom compost application using spent mushroom substrate derived biochar[J]. Chemosphere, 2017, 169:23-31.  doi: S0045-6535(16)31579-X    
																																																	pmid: 27855328
 | 
																													
																						| [14] | DIVINE D S, PATRICK B, HWANSOO J, et al.  Synergistic dye adsorption by biochar from co-pyrolysis of spent mushroom substrate and Saccharina japonica[J]. Bioresource technology, 2017, 244(Pt 1):1142-1149.  doi: 10.1016/j.biortech.2017.08.103    
																																					URL
 | 
																													
																						| [15] | 杨思林, 王大伟, 张颖, 等. 层迭灵芝子实体及其制备炭吸附Cd-(2+) 的研究[J]. 生物质化学工程, 2018, 52(01):35-40. | 
																													
																						| [16] | 刘子璐, 孙悦, 张国庆, 等. 高含量漆酶食用菌菌渣的筛选及其染料脱色作用[J]. 应用与环境生物学报, 2019, 25(6):1457-1463. | 
																													
																						| [17] | GUO Y X, CHEN Q J, QIN Y, et al.  Succession of the microbial communities and function prediction during short-term peach sawdust-based composting[J]. Bioresource technol, 2021, 332:25079. | 
																													
																						| [18] | SHI J D, GUO C L, LEI C L Y, et al.  High-performance biochar derived from the residue of chaga mushroom (inonotus obliquus) for pollutants removal[J]. Bioresource technol, 2022, 344(Pt B):126268. | 
																													
																						| [19] | LOW Y W, YEE K F. A review on lignocellulosic biomass waste into biochar-derived catalyst: current conversion techniques, sustainable applications and challenges[J]. Biomass bioenerg, 2021, 154:106245.  doi: 10.1016/j.biombioe.2021.106245    
																																					URL
 | 
																													
																						| [20] | 蒋春燕, 石凤丽, 李英杰, 等. 生物炭制备及其在水污染控制中的应用[J]. 化工新型材料, 2019, 47(5):235-239. | 
																													
																						| [21] | JIN Y, ZHANG M, JIN Z H, et al.  Characterization of biochars derived from various spent mushroom substrates and evaluation of their adsorption performance of Cu(II) ions from aqueous solution[J]. Environ res, 2021,196,110323. | 
																													
																						| [22] | DENG B L, SHI Y Z, ZHANG L, et al.  Effects of spent mushroom substrate-derived biochar on soil CO2 and N2O emissions depend on pyrolysis temperature[J]. Chemosphere, 2020, 246:125608.  doi: 10.1016/j.chemosphere.2019.125608    
																																					URL
 | 
																													
																						| [23] | 何梓林, 鲜杨, 孟晓霞, 等. 菌渣生物炭对镉污染土壤性质及小白菜吸收镉的影响[J]. 水土保持学报, 2019, 33(1):340-344,352. | 
																													
																						| [24] | 孟庆国, 池景良, 李鑫. 工厂化栽培杏鲍菇的菌渣再利用[J]. 中国食用菌, 2021, 40(9):87-92,97. | 
																													
																						| [25] | 张海波, 苏龙, 程红艳, 等. 不同热解温度制备的香菇菌糠生物炭对孔雀石绿的吸附及其机理分析[J]. 核农学报, 2021, 35(5):1231-1242.  doi: 10.11869/j.issn.100-8551.2021.05.1231
 | 
																													
																						| [26] | HASSAN M, LIU Y J, NAIDU R, et al.  Influences of feedstock sources and pyrolysis temperature on the properties of biochar and functionality as adsorbents: A meta-analysis[J]. Sci total environ, 2020, 744:140714.  doi: 10.1016/j.scitotenv.2020.140714    
																																					URL
 | 
																													
																						| [27] | 李思苇, Sarfraz Rubab, 杨文浩, 等. 炭化温度和时间对不同废菌棒生物炭结构性质的影响[J]. 福建农业学报, 2019, 34(10):1211-1220. | 
																													
																						| [28] | WANG X D, LI C X, LI Z W, et al.  Effect of pyrolysis temperature on characteristics, chemical speciation and risk evaluation of heavy metals in biochar derived from textile dyeing sludge[J]. Ecotoxicol environ saf, 2018, 168:45-52.  doi: 10.1016/j.ecoenv.2018.10.022    
																																					URL
 | 
																													
																						| [29] | WAN Y S, DEVEREUX R, GEORGE S E, et al.  Interactive effects of biochar amendment and lead toxicity on soil microbial community[J]. J hazard mater, 2022, 425:127921.  doi: 10.1016/j.jhazmat.2021.127921    
																																					URL
 |