Chinese Agricultural Science Bulletin ›› 2016, Vol. 32 ›› Issue (13): 103-109.doi: 10.11924/j.issn.1000-6850.casb15110146
Previous Articles Next Articles
Received:
2015-11-27
Revised:
2016-02-25
Accepted:
2016-03-28
Online:
2016-05-17
Published:
2016-05-17
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb15110146
[1] Yang T,SPoovaiah BW. Calcium/calmodulin-mediatedSsignalSnetworkSinSplants[J]. Trends in Plant Science,2003,8(10):505-512. [2] 简令成,王红.钙(Ca2 ) 在植物抗寒中的作用[J].中国细胞生物学学报,2002,03(3):166-171 [3] Zeng H, Xu L, Singh A, et al. Involvement of Calmodulin and Calmodulin-like Proteins in Plant Responses to Abiotic Stresses[J]. Frontiers in Plant Science,2015,6:600. [4] 张玉秀,彭晓静,柴团耀,等.植物液泡膜阳离子/H 反向转运蛋白结构和功能研究进展[J].生物工程学报,2011,27(4):546-560. [5] Swarbreck SM,SCola?o R,SDavies JM. PlantScalcium-permeableSchannels[J]. Plant Physiology,2013,163(2):514-522 [6] Mohammad Mahbub I, Shintaro M, Mohammad Anowar H, et al. Roles of AtTPC1, vacuolar two pore channel 1, in Arabidopsis stomatal closure[J]. Plant Cell Physiology,2010,51(2):302-311(10). [7] Kenji H, Mikako S, Hideaki M, et al.SIida K,SIida H. Functional analysis of a rice putative voltage-dependent Ca2 channel, OsTPC1, expressed in yeast cells lacking its homologous gene CCH1[J]. Plant Cell Physiology,2004,45(4):496-500. [8] 宋秀芬,洪剑明.植物细胞中钙信号的时空多样性与信号转导[J].植物学报,2001,18(4):436-444. [9] Kudla J,SBatistic O,SHashimoto K. Calcium signals: the lead currency of plant information processing[J]. Plant Cell,2010,22(3):541-63. [10] Briskin DP. Ca-translocatingSATPaseSof theSplantSplasma membrane[J]. Plant Physiology,1990,94(2):397-400. [11] Pfeiffer W, Hager A. A Ca2 -ATPase and a Mg2 /H -antiporter are present on tonoplast membranes from roots of Zea mays L[J]. Planta,1993,191(3):377-385. [12] Hsieh WL,SPierce WS,SSze H. Calcium-pumpingSATPasesSin vesicles from carrot cells : stimulation by calmodulin or phosphatidylserine, and formation of a 120 kilodalton phosphoenzyme[J]. PlantSPhysiology,1991,97(4):1535-1544. [13] H. Li?, E. W. Weiler. Ion-translocating ATPases in tendrils of Bryonia dioica Jacq[J]. Planta,1994,194(2):169-180. [14] Hong B,SIchida A,SWang Y,SGens JS,SPickard BG,SHarper JF. IdentificationSof a calmodulin-regulated Ca2 -ATPaseSin the endoplasmic reticulum[J]. PlantSPhysiology,1999,119(4):1165-76. [15] 单喆,张欣欣,高野哲夫,柳参奎.植物Cation/H 反向转运蛋白研究进展[J].基因组学与应用生物学,2012,3(1):303-309. [16] Zhang Y,SPeng X,SChai T,Set al. Structure and function of tonoplast Cation/H antiporters in plant: a review[J]. Chinese Journal of Biotechnology,2011,27(4):546-560. [17] Takehiro K, Masayoshi M. Residues in Internal Repeats of the Rice Cation/H Exchanger Are Involved in the Transport and Selection of Cations[J].Journal of Biological Chemistry,2004,279(1):812-819. [18] Lian X, Kashif Rafiq Z, Liangrong H, et al. GhCAX3 Gene, a Novel Ca2 /H Exchanger from Cotton, Confers Regulation of Cold Response and ABA Induced Signal Transduction[J]. Plos One,2013,8(6):e66303-e66303. [19] Zhang L,SHao J,SBao M,et al. Cloning and characterization of a Ca2 /H exchanger from the halophyte Salicornia europaea L[J]. Plant Physiology Biochemistry,2015,96:321-328 [20] Galon Y, Finkler A, Fromm H. Calcium-Regulated Transcription in Plants[J]. 分子植物:英文版,2010,4(4):653-669. [21] Zhang Q, Jiang N, Wang GL, et al. Advances in Understanding Cold Sensing and the Cold-Responsive Network in Rice[J]. Advances in Crop Science and Technology,2013,1:104. [22] 刘芝华,吴相钰.水稻钙调蛋白基因的克隆及结构分析[J].生物工程学报,1993,9(4):309-313. [23] Boonburapong B, Buaboocha T. Genome-Wide Identification And Analyses Of The Rice Calmodulin And Related Potential Calcium Sensor Proteins[J]. Advances in Crop Science and Technology,2007,7(1):4. [24] Mccormack E, Braam J. Calmodulins and related potential calcium sensors of Arabidopsis[J]. New Phytologist,2003,159(3):585-598(14). [25] Hoeflich KP1,SIkura M. Calmodulin in action: diversity in target recognition and activation mechanisms[J]. Cell,2002,108(6):739-742. [26] Yue R, Lu C, Sun T, et al. Identification and expression profiling analysis of calmodulin-binding transcription activator genes in maize (Zea mays L.) under abiotic and biotic stresses[J]. Frontiers in Plant Science,2015,6:576. [27] Kudla J,SXu Q,SHarter K,Set al. Genes for calcineurin B-like proteins in Arabidopsis are differentially regulated by stress signals[J]. Proceedings of the National Academy of Sciences of the United States of America,1999,96(8):4718-4723. [28] Mohanta T K, Mohanta N, Mohanta Y K, et al. Genome-wide identification of Calcineurin B-Like (CBL) gene family of plants reveals novel conserved motifs and evolutionary aspects in calcium signaling events[J]. Bmc Plant Biology,2015,15:1-15. [29] Masamichi N, Akira N, Nozomu K, et al.The crystal structure of the novel calcium-binding protein AtCBL2 from Arabidopsis thaliana[J]. Journal of Biological Chemistry,2003,278(43):42240-42246. [30] Revett S P, Nelson D J, King G, et al. Characterization of a helix-loop-helix (EF hand) motif of silver hake parvalbumin isoform B[J]. Protein Science,1997,6(11):2397–2408. [31] 汤湖斌,闵康康,徐玲玲,等.CBL-CIPKs信号系统的研究进展[J].中国细胞生物学学报,2015,1:100-105. [32] Shi J,SKim KN,SRitz O,Set al. Novel protein kinases associated with calcineurin B-like calcium sensors in Arabidopsis[J]. Plant Cell,1999,11(12):2393-2405. [33] Harmon A C, Putnam-Evans C, Cormier M J. A calcium-dependent but calmodulin-independent protein kinase from soybean[J]. Plant Physiology,1987,83(4):830-837. [34] Martín M L, Busconi L. A rice membrane-bound calcium-dependent protein kinase is activated in response to low temperature[J]. Plant Physiology, 2001,125(3):1442-1449. [35] Boudsocq M, Sheen J. CDPKs in immune and stress signaling[J].Trends in Plant Science,2013,18(1):30–40. [36] 陈硕,陈珈.植物中钙依赖蛋白激酶(CDPKs)的结构与功能[J].植物学报,2001,18(2):143-148. [37] Komatsu S, Li W, Konishi H, et al. Characterization of a Ca~(2 )-Dependent Protein Kinase from Rice Root: Differential Response to Cold and Regulation by Abscisic Acid[J]. Biological Pharmaceutical Bulletin,2001,24(11):1316-9. [38] Qi Z, Chen Q, Wang S, et al. Rice and cold stress: methods for its evaluation and summary of cold tolerance-related quantitative trait loci[J]. Rice,2014,7(1):24-24. [39] 梁颖,王三根.Ca2 对低温下水稻幼苗膜的保护作用[J].作物学报,2001,27(1):59-64 [40] 王芳,王丹丹,赵娟,等.钙对低温胁迫下玉米幼苗氧化损伤的保护作用[J].干旱地区农业研究,2014, 01(1):155-160. [41] Los DA, Murata N. Membrane fluidity and its roles in the perception of environmental signals[J]. Biochimica Et Biophysica Acta,2004,1666(1):142–157 [42] Yun K Y, Park M R, Mohanty B, et al. Transcriptional regulatory network triggered by oxidative signals configures the early response mechanisms of japonica rice to chilling stress[J]. Bmc Plant Biology,2010,10(1):16-16 [43] 龚伟,王伯初.钙离子在植物抵抗非生物胁迫中的作用[J].生命的化学,2011,01:107-111. [44] Los D A, Murata N. Membrane fluidity and its roles in the perception of environmental signals[J]. Biochimica Et Biophysica Acta,2004,1666(1-2):142–157. [45] Dametto A, Sperotto R A, Adamski J M, et al. Cold tolerance in rice germinating seeds revealed by deep RNAseq analysis of contrasting indica genotypes[J]. Plant Science,2015,238:1–12. [46] Ma Y,SDai X,SXu Y,SLuo W,Set al. COLD1 Confers Chilling Tolerance in Rice[J]. Cell,2015,160(6):1209–1221. [47] Shi Y, Gong Z. One SNP in COLD1 Determines Cold Tolerance during Rice Domestication[J]. Journal of Genetics Genomics,2015,4(4):133-134. [48] Manishankar P, Kudla J. Cold Tolerance Encoded in One SNP[J]. Cell,2015,160(6):1045–1046. [49] Shi Y T, Yang S H. COLD1: a cold sensor in rice[J]. Science China Life Sciences,2015,58(4):1-2. [50] Huda K M K, Banu M S A, Yadav S, et al. Salinity and drought tolerant OsACA6 enhances cold tolerance in transgenic tobacco by interacting with stress-inducible proteins[J]. Plant Physiology Biochemistry,2014,82(3):229–238. [51] Xi J,SQiu Y,SDu L,SPoovaiah BW. Plant-specific trihelix transcription factor AtGT2L interacts with calcium/calmodulin and responds to cold and salt stresses[J]. Plant Science,2012,185-186(4):274–280. [52] Xu G Y, Rocha P S C F, Wang M L, et al. A novel rice calmodulin-like gene, OsMSR2, enhances drought and salt tolerance and increases ABA sensitivity in Arabidopsis[J]. Planta,2011,234(1):47-59. [53] Zheng L L, Gao Z, Wang J, et al. Molecular cloning and functional characterization of a novel CBL-interacting protein kinase NtCIPK2 in the halophyte Nitraria tangutorum[J].Genetics Molecular Research Gmr,2014,13(3):4716-4728. [54] Jingli Y, Fangfang N, Wu-Zhen L, et al. Arabidopsis CIPK14 positively regulates glucose response[J]. Biochemical Biophysical Research Communications,2014,450(4):1679-1683. [55] Conglin H, Shuo D, Hua Z, et al. CIPK7 is involved inScoldSresponse by interacting with CBL1 in Arabidopsis thaliana[J]. Plant Science An International Journal of Experimental Plant Biology,181(1):57-64. [56] Dubrovina A S, Kiselev K V, Khristenko V S, et al. VaCPK20, a calcium-dependent protein kinase gene of wild grapevine Vitis amurensis Rupr., mediates cold and drought stress tolerance[J]. Journal of Plant Physiology,2015,185:1-12. [57] Philipp W, Britta E, Tina R. ZmCPK1, a calcium-independent kinase member of the Zea mays?CDPK gene family, functions as a negative regulator in cold stress signalling[J]. Plant Cell Environment,2015,38(3):544-558. [58] Abbasi F,SOnodera H,SToki S,et al. OsCDPK13, a calcium-dependent protein kinase gene from rice, is induced by cold and gibberellin in rice leaf sheath[J]. Plant Molecular Biology,2004,55(4):541-552. [59] Komatsu S,SYang G,SKhan M,Set al. Over-expression of calcium-dependent protein kinase 13 and calreticulin interacting protein 1 confers cold tolerance on rice plants[J]. Molecular Genetics Genomics Mgg,2007,277(6):713-723. [60] Saijo Y,SHata S,SKyozuka J,Set al. Over-expression of a single Ca2 -dependent protein kinase confers both cold and salt/drought tolerance on rice plants[J]. Plant Journal for Cell Molecular Biology,2000,23(3):319-27. [61] Saijo Y,SKinoshita N,SIshiyama K,Set al. A Ca2 -Dependent Protein Kinase that Endows Rice Plants with Cold- and Salt-Stress Tolerance Functions in Vascular Bundles[J].Plant Cell Physiology,2001,42(11):1228-1233. |
[1] | FENG Changqing, WEI Xiaoling, HUANG Yunxia, XU Shichang, QIU Fuxiang, WU Ti, ZHENG Yingjie, LI Wenqing, HE Huaqin. The Physiological Basis of Magnesium Recovering Tobacco Plants from High Temperature and Strong Light Stress [J]. Chinese Agricultural Science Bulletin, 2022, 38(20): 53-60. |
[2] | JIANG Yujie, JIA Qiaojun, JIAO Jie, CHEN Xiliang, MA Cunde, CHANG Hui, LIANG Zongsuo. The Shade Tolerance and Cold Resistance of Polygonatum Germplasm: An Evaluation by Physiological and Biochemical Methods [J]. Chinese Agricultural Science Bulletin, 2022, 38(13): 96-103. |
[3] | Ma Jie, Yin Xuehong, Li Zhi, Yang Juan, Zheng Guoqi, Liang Xinhua. Basal Application and Topdressing of Selenium-enriched Organic Fertilizers: Effects on Chlorophyll Fluorescence, Yield and Selenium Enrichment of Wheat [J]. Chinese Agricultural Science Bulletin, 2021, 37(32): 1-9. |
[4] | Deng Xinwei, Liu Meng, Liu Shipeng. Effect of Fertilization on Vitamin C Content in Jujube of Mountain Region [J]. Chinese Agricultural Science Bulletin, 2021, 37(32): 78-82. |
[5] | Li Jiancha, Li Kun, Pan Zhixian, Sun Yi, Fang Haidong, Shi Liangtao, Zhang Lei, Yue Xuewen. Effects of Irrigation Amount and Planting Density on Biomass Allocation, Yield and Water Use Efficiency of Purple Cabbage in Arid-hot Valley [J]. Chinese Agricultural Science Bulletin, 2021, 37(26): 50-57. |
[6] | Xu Ruo, Zhang Xiufen, Li Yanbing, Zi Shuhui, Yang Shengchao, Liu Tao. Effects of Drought Stress on Physiological Indexes of Panax notoginseng and Transcriptome Analysis [J]. Chinese Agricultural Science Bulletin, 2021, 37(16): 51-58. |
[7] | Wang Jinghong, Chen Ai, Zhang Wen, Zhao Yi, Tian Jingyao, Wang Zhensheng, Xu Gudan, Lin Jixiang. Rooting Agent (GGR-6): Effects on the Response of Festuca rubra and Poa pratensis to Drought Stress [J]. Chinese Agricultural Science Bulletin, 2021, 37(15): 47-54. |
[8] | Luo Qinghong, Abudurexiti Reheman, Li Yinglun, Zhou Bin, Gulinisha Kasimu. Research on the Ion Absorption, Transportation and Distribution of Mature E. angustifolia in Saline Soil Habitat [J]. Chinese Agricultural Science Bulletin, 2021, 37(11): 87-94. |
[9] | Zhu Yanxia, Chen Dongliang, Huang Yanfen. Germination Characteristics of Scoparia dulcis Seeds [J]. Chinese Agricultural Science Bulletin, 2021, 37(10): 72-76. |
[10] | Wang Mengliu, Fan Weiguo, Guan Jiyuan, Gong Fangfang, He Chunli. Effect of Nutrient Solution pH on Nitrate-N and Ammonium-N Uptake of Rosa roxburghii Seedlings [J]. Chinese Agricultural Science Bulletin, 2021, 37(9): 28-34. |
[11] | Li Wan, He Ning, Xiang Hongtao, Liu Miao, Wang Manli, Li Bo, Wang Xueyang. Exogenous Hormone in Flowering Period of Adzuki Bean: Effects on Agronomic and Yield Characters [J]. Chinese Agricultural Science Bulletin, 2021, 37(8): 8-13. |
[12] | Wu Yunfei, Zhang Yong, Wang Leilei, Yu Xurun, Xiong Fei. Starch Quality of Rice Grain: Research Progress on Influencing Factors and Mechanism [J]. Chinese Agricultural Science Bulletin, 2021, 37(6): 1-8. |
[13] | Tang Hongyou, Shi Jianyin, Han Zhanjiang, Bai Menghan, Sun Yang, Zhang Min. Physiological Response of Populus talassica× P. euphratica to Na2SO4 Environment [J]. Chinese Agricultural Science Bulletin, 2021, 37(4): 38-42. |
[14] | Gong Qin, Wang Ling, Song Yaqi, Niu Duandan, Li Jiaxuan, Li Zhaohua. Cu-tolerance Mechanisms of Elsholtzia harchowensis: Research Status and Prospect [J]. Chinese Agricultural Science Bulletin, 2020, 36(32): 95-99. |
[15] | Ma Ling, Qiu Wenting, Wang Yanjun, Kang Tianlan, Li Mengfei. Establishment of Tissue Culture and Rapid Propagation System for Rare Medicinal Bletilla striata [J]. Chinese Agricultural Science Bulletin, 2020, 36(19): 80-84. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||