Chinese Agricultural Science Bulletin ›› 2021, Vol. 37 ›› Issue (27): 90-99.doi: 10.11924/j.issn.1000-6850.casb2020-0859
Special Issue: 油料作物
Previous Articles Next Articles
Yang Miaoling1(), Zhang Wei1, Wei Qiuhe1, Shi Liming1, Guo Yuan2, Zhang Kecheng1, Ge Beibei1(
)
Received:
2021-01-04
Revised:
2021-05-11
Online:
2021-09-25
Published:
2021-10-28
Contact:
Ge Beibei
E-mail:meiguill@126.com;gbbcsx@126.com
CLC Number:
Yang Miaoling, Zhang Wei, Wei Qiuhe, Shi Liming, Guo Yuan, Zhang Kecheng, Ge Beibei. Sclerotinia Stem Rot of Soybean: A Review[J]. Chinese Agricultural Science Bulletin, 2021, 37(27): 90-99.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2020-0859
基因名称 | 基因号 | 主要功能 | 参考文献 |
---|---|---|---|
Ssv263 | SS1G_00263 | 致病性 | [ |
SsCVNH | SS1G_02904 | 致病性;菌核发育 | [ |
Ss_Bil | SS1G_05839 | 致病性;菌丝生长发育 | [ |
SsPemG1 | SS1G_07345 | 致病性; | [ |
SsNACα | SS1G_05284 | 致病性;菌核发育 | [ |
SsSSVP1 | SS1G_02068 | 致病性;诱导植物细胞凋亡 | [ |
SsCP1 | SS1G_10096 | 致病性;诱导植物细胞凋亡;抑制寄主防御反应 | [ |
SsSm1 | SS1G_10096 | 致病性;菌丝生长;菌核形成;诱导植物细胞凋亡 | [ |
Ss_Rbs1 | SS1G_07404 | 致病性;菌核形成;侵染垫形成 | [ |
SsCFEM1 | SS1G_07295 | 致病性;侵染垫发育 | [ |
SsCdc28 | SS1G_02296 | 致病性;菌丝生长发育 | [ |
Sszfh1 | SS1G_06044 | 致病性;菌丝生长发育;调控胁迫应答 | [ |
Ssgar2 | SS1G_00736 | 致病性;耐盐性;维持细胞壁稳定性 | [ |
Sslga1 | SS1G_12905 | 致病性;耐盐性 | [ |
Sslgd1 | SS1G_00738 | 致病性;耐盐性 | [ |
SsNE2 | SS1G_00849 | 致病性;诱导植物坏死 | [ |
基因名称 | 基因号 | 主要功能 | 参考文献 |
---|---|---|---|
Ssv263 | SS1G_00263 | 致病性 | [ |
SsCVNH | SS1G_02904 | 致病性;菌核发育 | [ |
Ss_Bil | SS1G_05839 | 致病性;菌丝生长发育 | [ |
SsPemG1 | SS1G_07345 | 致病性; | [ |
SsNACα | SS1G_05284 | 致病性;菌核发育 | [ |
SsSSVP1 | SS1G_02068 | 致病性;诱导植物细胞凋亡 | [ |
SsCP1 | SS1G_10096 | 致病性;诱导植物细胞凋亡;抑制寄主防御反应 | [ |
SsSm1 | SS1G_10096 | 致病性;菌丝生长;菌核形成;诱导植物细胞凋亡 | [ |
Ss_Rbs1 | SS1G_07404 | 致病性;菌核形成;侵染垫形成 | [ |
SsCFEM1 | SS1G_07295 | 致病性;侵染垫发育 | [ |
SsCdc28 | SS1G_02296 | 致病性;菌丝生长发育 | [ |
Sszfh1 | SS1G_06044 | 致病性;菌丝生长发育;调控胁迫应答 | [ |
Ssgar2 | SS1G_00736 | 致病性;耐盐性;维持细胞壁稳定性 | [ |
Sslga1 | SS1G_12905 | 致病性;耐盐性 | [ |
Sslgd1 | SS1G_00738 | 致病性;耐盐性 | [ |
SsNE2 | SS1G_00849 | 致病性;诱导植物坏死 | [ |
[1] | 韩天富. 中国大豆增产的潜力与路径探讨[J]. 中国畜牧兽医报, 2020, 11(1):001. |
[2] | 叶文武, 郑小波, 王源超. 大豆根腐病监测与防控关键技术研究进展[J]. 大豆科学, 2020, 39(5):804-809. |
[3] | 李易初. 黑龙江大豆菌核病菌生物学特性、融合群及遗传多样性研究[D]. 哈尔滨:东北农业大学, 2014. |
[4] | 张军政. 黑龙江省大豆核盘菌生物学特性和生物防治的研究[D]. 哈尔滨:哈尔滨工业大学, 2009. |
[5] | Libert M A. Plante crytogamicae arduennae (exsiccati) no. 326[J]. Published by the author,1837. |
[6] |
Purdy L H. Sclerotinia sclerotiorum: history, diseases and symptomatology, host range, geographic distribution, and impact[J]. Phytopathology, 1979, 69(8):875-880.
doi: 10.1094/Phyto-69-875 URL |
[7] |
Whetzel H H. A synopsis of the genera and species of the sclerotiniaceae, a family of stromatic inoperculate discomycetes[J]. Mycologia, 1945, 37(6):648-714.
doi: 10.2307/3755132 URL |
[8] |
Dumont K P, Korf R P. Sclerotiniaceae. Generic nomenclature[J]. Mycologia, 1971, 63(1):157-168.
doi: 10.2307/3757696 URL |
[9] |
Holst-Jensen A, Kohn L M, Schumacher T. Nuclear rdna phylogeny of the sclerotiniaceae[J]. Mycologia, 1997, 89(6):885-899.
doi: 10.2307/3761109 URL |
[10] | 张霞, 金燕. 大豆常见病害症状识别与防治[J]. 现代农业科技, 2008(24):133-136. |
[11] |
Williams B, Kabbage M, Kim H J, et al. Tipping the balance: Sclerotinia sclerotiorum secreted oxalic acid suppresses host defenses by manipulating the host redox environment[J]. Plos Pathogens, 2011, 7(6):e1002107-e1002107.
doi: 10.1371/journal.ppat.1002107 URL |
[12] |
Bolton M D, Thomma B P, Nelson B D. Sclerotinia sclerotiorum (Lib.) de bary: Biology and molecular traits of a cosmopolitan pathogen[J]. Molecular Plant Pathology, 2006, 7(1):1-16.
doi: 10.1111/mpp.2006.7.issue-1 URL |
[13] |
Li M, Rollins J A. The development-specific protein (SSP1) from Sclerotinia sclerotiorum is encoded by a novel gene expressed exclusively in sclerotium tissues[J]. Mycologia, 2009, 101(1):34-43.
doi: 10.3852/08-114 URL |
[14] |
Erental A, Dickman M B, Yarden O. Sclerotial development in Sclerotinia sclerotiorum: Awakening molecular analysis of a "dormant" structure[J]. Fungal Biology Reviews, 2008, 22(1):6-16.
doi: 10.1016/j.fbr.2007.10.001 URL |
[15] |
Georgiou C D, Pjnatsoukis N, Zervoudakis P G. Sclerotial metamorphosis in filamentous fungi is induced by oxidative stress[J]. Integrative and Comparative Biology, 2006, 46(6):691-712.
doi: 10.1093/icb/icj034 URL |
[16] |
Papapostolou I, Georgiou C D. Hydrogen peroxide is involved in the sclerotial differentiation of filamentous phytopathogenic fungi[J]. Journal of Applied Microbiology, 2010, 109(6):1929-1936.
doi: 10.1111/j.1365-2672.2010.04822.x pmid: 20681971 |
[17] |
Chet I, Henis Y. Sclerotial morphogenesis in fungi[J]. Annual Review of Phytopathology, 1975, 13(1):169-192.
doi: 10.1146/phyto.1975.13.issue-1 URL |
[18] |
Tourneau D L. Morphology, cytology, and physiology of sclerotinia species in culture[J]. Phytopathology, 1979, 69(8):887-890.
doi: 10.1094/Phyto-69-887 URL |
[19] |
Willets H J, Bullock S. Developmental biology of sclerotia[J]. Mycological Research, 1992, 96:801-816.
doi: 10.1016/S0953-7562(09)81027-7 URL |
[20] |
Rollins J A Dickman M B. pH signaling in Sclerotinia sclerotiorum: identification of a PACC/RIM1 homolog[J]. Applied and Environmental Microbiology, 2001, 67(1):75-81.
pmid: 11133430 |
[21] |
Dickman M B, Park Y K, Oltersdorf T, et al. Abrogation of disease development in plants expressing animal antiapoptotic genes[J]. Proceedings of the National Academy of Sciences, 2001, 98(12):6957-6962.
doi: 10.1073/pnas.091108998 URL |
[22] |
Wayne I I, Dickman M B, Rollins J A. Characterization and functional analysis of a camp-dependent protein kinase a catalytic subunit gene (PKA1) in Sclerotinia sclerotiorum[J]. Physiological and Molecular Plant Pathology, 2004, 64(3):155-163.
doi: 10.1016/j.pmpp.2004.07.004 URL |
[23] |
Erental A, Harel A, Yarden O. Type 2a phosphoprotein phosphatase is required for asexual development and pathogenesis of Sclerotinia sclerotiorum[J]. Molecular Plant-Microbe Interactions, 2007, 20(8):944-954.
pmid: 17722698 |
[24] |
Rollins J A. The Sclerotinia sclerotiorum PAC1 gene is required for sclerotial development and virulence[J]. Molecular Plant-Microbe Interactions, 2003, 16(9):785-795.
doi: 10.1094/MPMI.2003.16.9.785 URL |
[25] |
Liang Y, Xiong W, Steinkellner S, et al. Deficiency of the melanin biosynjournal genes SCD1 and thr1 affects sclerotial development and vegetative growth, but not pathogenicity, in Sclerotinia sclerotiorum[J]. Molecular Plant Pathology, 2018, 19(6):1444-1453.
doi: 10.1111/mpp.12627 pmid: 29024255 |
[26] |
Qu X, Yu B, Liu J, et al. Mads-box transcription factor SsMAD is involved in regulating growth and virulence in Sclerotinia sclerotiorum[J]. International Journal of Molecular Sciences, 2014, 15(5):8049-8062.
doi: 10.3390/ijms15058049 URL |
[27] |
Fan H, Yu G, Liu Y, et al. An atypical forkhead-containing transcription factor ssfkh1 is involved in sclerotial formation and is essential for pathogenicity in Sclerotinia sclerotiorum[J]. Molecular Plant Pathology, 2017, 18(7):963-975.
doi: 10.1111/mpp.2017.18.issue-7 URL |
[28] | 母红岩. 核盘菌菌核的菌丝型萌发与侵染特性研究[D]. 武汉:华中农业大学, 2017. |
[29] |
Bolton M D Thomma B P H J Nelson B D. Sclerotinia sclerotiorum (Lib.) de bary: biology and molecular traits of a cosmopolitan pathogen[J]. Molecular Plant Pathology, 2006, 7(1):1-16.
doi: 10.1111/mpp.2006.7.issue-1 URL |
[30] | 杨谦. 张翼鹏. 核盘菌子囊盘形成的影响因子[J]. 东北林业大学学报, 1995(2):126-130. |
[31] |
Nepal A, Mendoza L E D R. Effect of sclerotial water content on carpogenic germination of Sclerotinia sclerotiorum[J]. Plant Disease, 2012, 96(9):1315-1322.
doi: 10.1094/PDIS-10-11-0889-RE URL |
[32] | Huang H C, Kozub G C. Germination of immature and mature sclerotia of Sclerotinia sclerotiorum[J]. Botanical Bulletin of Academia Sinica, 1994, 35:243-247. |
Krager W. The effect of environmental factors on the development of apothecia and ascospores of the rape stalk-break pathogen Sclerotinia sclerotiorum (Lib). de Bary[J]. Zeitschrift fur Pflanzenkrankheiten and Pflanzenschutz, 1975, 82:101-108. | |
[34] | 董全中. 大豆菌核病的发生规律及综合防治[J]. 大豆通报, 2003(3):13. |
[35] |
Adams P, Ayers W. Ecology of sclerotinia species[J]. Phytopathology, 1979, 69(8):896-899.
doi: 10.1094/Phyto-69-896 URL |
[36] |
David B, Evzenie P, Jiri S, et al. Use of petal test in early-flowering varieties of oilseed rape (Brassica napus L.) for predicting the infection pressure of Sclerotinia sclerotiorum(Lib.) de bary[J]. Crop Protection, 2016, 80:127-131.
doi: 10.1016/j.cropro.2015.11.006 URL |
[37] | 王爱印. 桑椹菌核病病原菌的分离、鉴定及其拮抗性桑树内生菌的研究[D]. 重庆:西南大学, 2016. |
[38] |
Abawi G, Grogan R. Epidemiology of diseases caused by sclerotinia species[J]. Phytopathology, 1979, 69(8):899-904.
doi: 10.1094/Phyto-69-899 URL |
[39] | Inglis G D, Boland G J. The microflora of bean and rapeseed petals and the influence of the microflora of bean petals on white mold[J]. Canadian Journal of Plant Pathology, 1990(2):129-134. |
[40] |
Young C, Werner C. Infection routes for Sclerotinia sclerotiorum in apetalous and fully petalled winter oilseed rape[J]. Plant Pathology, 2012, 61(4):730-738.
doi: 10.1111/ppa.2012.61.issue-4 URL |
[41] | 楊新美. 油菜菌核病(Sclerotinia sclerotiorum)在中国的寄主范围及生态特性的调查研究[J]. 植物病理学报, 1959(2):111-122. |
[42] |
Boland G, Hall R. Index of plant hosts of Sclerotinia sclerotiorum[J]. Canadian Journal of Plant Pathology, 1994, 16(2):93-108.
doi: 10.1080/07060669409500766 URL |
[43] |
Bardin S, Huang H. Research on biology and control of sclerotinia diseases in canada1[J]. Canadian Journal of Plant Pathology, 2001, 23(1):88-98.
doi: 10.1080/07060660109506914 URL |
[44] |
Liang X, Rollins J A. Mechanisms of broad host range necrotrophic pathogenesis in Sclerotinia sclerotiorum[J]. Phytopathology, 2018, 108(10):1128-1140.
doi: 10.1094/PHYTO-06-18-0197-RVW URL |
[45] |
Li M, Liang X, Rollins J A. Sclerotinia sclerotiorum γ-glutamyl transpeptidase (Ss-ggt1) is required for regulating glutathione accumulation and development of sclerotia and compound appressoria[J]. Molecular Plant-Microbe Interactions, 2012, 25(3):412-420.
doi: 10.1094/MPMI-06-11-0159 URL |
[46] |
Xiao X, Xie J, Cheng J, et al. Novel secretory protein Ss-caf1 of the plant-pathogenic fungus Sclerotinia sclerotiorum is required for host penetration and normal sclerotial development[J]. Molecular Plant-Microbe Interactions, 2014, 27(1):40-55.
doi: 10.1094/MPMI-05-13-0145-R URL |
[47] |
Liang X, Moomaw E W, Rollins J A. Fungal oxalate decarboxylase activity contributes to Sclerotinia sclerotiorum early infection by affecting both compound appressoria development and function[J]. Molecular Plant Pathology, 2015, 16(8):825-836.
doi: 10.1111/mpp.2015.16.issue-8 URL |
[48] |
Yu Y, Xiao J, Zhu W, et al. Ss-rhs1, a secretory rhs repeat-containing protein, is required for the virulence of Sclerotinia sclerotiorum[J]. Molecular Plant Pathology, 2017, 18(8):1052-1061.
doi: 10.1111/mpp.2017.18.issue-8 URL |
[49] | 刘玲. GATA转录因子在核盘菌生长发育和致病过程的功能研究[D]. 吉林:吉林大学, 2019. |
[50] |
Amselem J Cuomo C A van Kan J A, et al. Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and botrytis cinerea[J]. PLoS Genet, 2011, 7(8):e1002230.
doi: 10.1371/journal.pgen.1002230 URL |
[51] |
Derbyshire M, Denton-Giles M, Hegedus D, et al. The complete genome sequence of the phytopathogenic fungus Sclerotinia sclerotiorum reveals insights into the genome architecture of broad host range pathogens[J]. Genome Biology and Evolution, 2017, 9(3):593-618.
doi: 10.1093/gbe/evx030 pmid: 28204478 |
[52] |
Seifbarghi S, Borhan M H, Wei Y, et al. Changes in the Sclerotinia sclerotiorum transcriptome during infection of brassica napus[J]. BMC Genomics, 2017, 18(1):266.
doi: 10.1186/s12864-017-3642-5 pmid: 28356071 |
[53] | 羊国根, 程家森. 核盘菌致病机理研究进展[J]. 生物技术通报, 2018, 34(4):9-15. |
[54] |
Oliveira M B, de Andrade R V, Grossi-de-Sá M F, et al. Analysis of genes that are differentially expressed during the Sclerotinia sclerotiorum phaseolus vulgaris interaction[J]. Frontiers in Microbiology, 2015, 6:1162.
doi: 10.3389/fmicb.2015.01162 pmid: 26579080 |
[55] |
Bashi Z D, Rimmer S R, Khachatourians G G, et al. Factors governing the regulation of Sclerotinia sclerotiorum cutinase a and polygalacturonase 1 during different stages of infection[J]. Canadian Journal of Microbiology, 2012, 58(5):605-616.
doi: 10.1139/w2012-031 URL |
[56] | Bateman D. An induced mechanism of tissue resistance to polygalacturonase in rhizoctonia-infected hypocotyls of bean[J]. Phytopathology, 1964, 54(4):438-445. |
[57] |
Liang X, Liberti D, Li M, et al. Oxaloacetate acetylhydrolase gene mutants of Sclerotinia sclerotiorum do not accumulate oxalic acid, but do produce limited lesions on host plants[J]. Molecular Plant Pathology, 2015, 16(6):559-571.
doi: 10.1111/mpp.2015.16.issue-6 URL |
[58] |
Chen C, Harel A, Gorovoits R, et al. Mapk regulation of sclerotial development in Sclerotinia sclerotiorum is linked with pH and camp sensing[J]. Molecular Plant-Microbe Interactions, 2004, 17(4):404-413.
doi: 10.1094/MPMI.2004.17.4.404 URL |
[59] |
Jeffrey A R, Martin B D. Increase in endogenous and exogenous cyclic AMP levels inhibits sclerotial development in Sclerotinia sclerotiorum[J]. Applied and Environmental Microbiology, 1998, 64(7):2539-2539.
doi: 10.1128/AEM.64.7.2539-2544.1998 URL |
[60] |
Cessna S G, Sears V E, Dickman M B, et al. Oxalic acid, a pathogenicity factor for Sclerotinia sclerotiorum, suppresses the oxidative burst of the host plant[J]. The Plant Cell, 2000, 12(11):2191-2199.
doi: 10.1105/tpc.12.11.2191 URL |
[61] |
Novaes M I C, Debona D, Fagundes-Nacarath I R F, et al. Physiological and biochemical responses of soybean to white mold affected by manganese phosphite and fluazinam[J]. Acta Physiologiae Plantarum, 2019, 41(12):186.
doi: 10.1007/s11738-019-2976-9 URL |
[62] |
Fagundes-Nacarath I R F, Debona D, Rodrigues F A. Oxalic acid-mediated biochemical and physiological changes in the common bean Sclerotinia sclerotiorum interaction[J]. Plant Physiology Biochemistry, 2018, 129:109-121.
doi: 10.1016/j.plaphy.2018.05.028 URL |
[63] |
Xu L, Li G, Jiang D, et al. Sclerotinia sclerotiorum: An evaluation of virulence theories[J]. Annual Review of Phytopathology, 2018, 56:311-338.
doi: 10.1146/phyto.2018.56.issue-1 URL |
[64] |
Kabbage M, Yarden O, Dickman M B. Pathogenic attributes of Sclerotinia sclerotiorum: switching from a biotrophic to necrotrophic lifestyle[J]. Plant Science, 2015, 233:53-60.
doi: S0168-9452(14)00305-7 pmid: 25711813 |
[65] |
Liang Y, Yajima W, Davis M R, et al. Disruption of a gene encoding a hypothetical secreted protein from Sclerotinia sclerotiorum reduces its virulence on canola (Brassica napus)[J]. Canadian Journal of Plant Pathology, 2013, 35(1):46-55.
doi: 10.1080/07060661.2012.745904 URL |
[66] |
Lyu X, Shen C, Fu Y, et al. Comparative genomic and transcriptional analyses of the carbohydrate-active enzymes and secretomes of phytopathogenic fungi reveal their significant roles during infection and development[J]. Scientific reports, 2015, 5:15565.
doi: 10.1038/srep15565 URL |
[67] |
Yu Y, Xiao J, Yang Y, et al. Ss-Bi1 encodes a putative bax inhibitor-1 protein that is required for full virulence of Sclerotinia sclerotiorum[J]. Physiological and Molecular Plant Pathology, 2015, 90:115-122.
doi: 10.1016/j.pmpp.2015.04.005 URL |
[68] |
Pan Y, Xu Y, Li X, et al. Sspemg1 encodes an elicitor-homologous protein and regulates pathogenicity in Sclerotinia sclerotiorum[J]. Physiological and Molecular Plant Pathology, 2015, 92:70-78.
doi: 10.1016/j.pmpp.2015.08.010 URL |
[69] |
Gao Z, Li X, Guo M, et al. The nascent-polypeptide-associated complex alpha subunit regulates the polygalacturonases expression negatively and influences the pathogenicity of Sclerotinia sclerotiorum[J]. Mycologia, 2015, 107(6):1130-1137.
doi: 10.3852/14-250 URL |
[70] |
Lyu X, Shen C, Fu Y, et al. A small secreted virulence-related protein is essential for the necrotrophic interactions of Sclerotinia sclerotiorum with its host plants[J]. Plos Pathogens, 2016, 12(2):e1005435.
doi: 10.1371/journal.ppat.1005435 URL |
[71] | 羊国根. 核盘菌分泌蛋白Sscp1的功能研究[D]. 武汉:华中农业大学, 2017. |
[72] |
Pan Y, Wei J, Yao C, et al. Sssm1, a cerato-platanin family protein, is involved in the hyphal development and pathogenic process of Sclerotinia sclerotiorum[J]. Plant Science, 2018, 270:37-46.
doi: 10.1016/j.plantsci.2018.02.001 URL |
[73] | 纪旭. 核盘菌分泌蛋白SsCFEM1的功能研究[D]. 吉林:吉林大学, 2020. |
[74] | 张博雯. 核盘菌细胞分裂周期蛋白SsCDC28的功能研究[D]. 吉林:吉林大学, 2019. |
[75] | 吕兴明. 核盘菌C2H2型锌指蛋白SsZFH1的功能研究[D]. 吉林:吉林大学, 2019. |
[76] |
Wei W, Pierre-Pierre N, Peng H, et al. The d-galacturonic acid catabolic pathway genes differentially regulate virulence and salinity response in Sclerotinia sclerotiorum[J]. Fungal Genetics and Biology, 2020, 145:103482.
doi: 10.1016/j.fgb.2020.103482 pmid: 33137429 |
[77] |
Seifbarghi S, Borhan M H, Wei Y, et al. Receptor-like kinases bak1 and sobir1 are required for necrotizing activity of a novel group of Sclerotinia sclerotiorum necrosis-inducing effectors[J]. Frontiers in Plant Science, 2020, 11:1021.
doi: 10.3389/fpls.2020.01021 pmid: 32754179 |
[78] | 宋淑云, 晋齐鸣, 张伟, 等. 大豆菌核病菌的接种技术研究进展.见:中国植物保护学会2007年学术年会. 中国广西桂, 2007: 4. |
[79] |
Megan M C, Jaime W, Ashish R, et al. Development and evaluation of glycine max germplasm lines with quantitative resistance to Sclerotinia sclerotiorum[J]. Frontiers in Plant Science, 2017, 8:1495.
doi: 10.3389/fpls.2017.01495 URL |
[80] | Willbur J F, Ding S, Marks M E, et al. Comprehensive sclerotinia stem rot screening of soybean germplasm requires multiple isolates of Sclerotinia sclerotiorum[J]. Plant Disease, 2017, 7(16):1055. |
[81] | Ramkrishna K, Chen C Y, Grau C R, et al. Soybean resistance to white mold: Evaluation of soybean germplasm under different conditions and validation of QTL[J]. Front Plant, 2018, 9:505. |
[82] | 苗保河. 大豆品种资源抗菌核病鉴定[J]. 中国油料, 1994(03):67-68. |
[83] |
韩粉霞, 韩广振, 孙君明, 等. 44份大豆微核心种质抗菌核病鉴定与评价[J]. 作物学报, 2013, 39(10):1783-1790.
doi: 10.3724/SP.J.1006.2013.01783 |
[84] |
Huynh T T, Bastien M, Iquira E, et al. Identification of QTLs associated with partial resistance to white mold in soybean using field-based inoculation[J]. Crop Science, 2010, 50(3):969-979.
doi: 10.2135/cropsci2009.06.0311 URL |
[85] |
Li D, Sun M, Han Y, et al. Identification of QTL underlying soluble pigment content in soybean stems related to resistance to soybean white mold (Sclerotinia sclerotiorum)[J]. Euphytica, 2010, 172(1):49-57.
doi: 10.1007/s10681-009-0036-z URL |
[86] |
Zhao X, Han Y, Li Y, et al. Loci and candidate gene identification for resistance to Sclerotinia sclerotiorum in soybean (glycine max l. Merr.) via association and linkage maps[J]. Plant Journal for Cell and Molecular Biology, 2015, 82(2):245-255.
doi: 10.1111/tpj.2015.82.issue-2 URL |
[87] | 宋伟, 赵雪, 徐玲秀, 等. 大豆抗菌核病位点挖掘及一致性QTL分析[J]. 中国油料作物学报, 2017, 39(6):763-770. |
[88] | 张羽. 大豆抗菌核病的全基因组关联研究[J]. 华北农学报, 2020, 35(1):205-213. |
[89] |
Sun M, Jing Y, Zhao X, et al. Genome-wide association study of partial resistance to sclerotinia stem rot of cultivated soybean based on the detached leaf method[J]. PLoS One, 2020, 15(5):e0233366.
doi: 10.1371/journal.pone.0233366 URL |
[90] | 董祥柏. 葡萄糖氧化酶基因和草酸氧化酶基因在甘蓝型油菜中的表达研究[D]. 北京:中国农业科学院, 2004. |
[91] | 张宇航, 李永光, 王雪松, 等. 大豆Gm_GLP10基因的克隆及生物信息学分析[J]. 大豆科学, 2016, 35(3):388-393. |
[92] | 杨静, 赵倩倩, 牛陆, 等. 转盾壳霉Cmoxdc1基因增强大豆对菌核病抗性的研究[J]. 大豆科学, 2020, 181(5):73-80. |
[93] | 余涵. 盾壳霉胞外丝氨酸蛋白酶基因的克隆与功能研究[D]. 武汉:华中农业大学, 2016. |
[94] |
Willbur J, McCaghey M, Kabbage M, et al. An overview of the Sclerotinia sclerotiorum pathosystem in soybean: Impact, fungal biology, and current management strategies[J]. Tropical Plant Pathology, 2019, 44(1):3-11.
doi: 10.1007/s40858-018-0250-0 |
[95] |
Workneh F, Yang X B. Prevalence of sclerotinia stem rot of soybeans in the north-central united states in relation to tillage, climate, and latitudinal positions[J]. Phytopathology, 2000, 90(12):1375.
doi: 10.1094/PHYTO.2000.90.12.1375 pmid: 18943379 |
[96] | 徐彩龙, 韩天富, 吴存祥. 黄淮海麦茬大豆免耕覆秸精量播种栽培技术研究[J]. 大豆科学, 2018, 37(2):197-201. |
[97] | Jaime W, Megan M C, Mehdi K, et al. An overview of the Sclerotinia sclerotiorum pathosystem in soybean: Impact, fungal biology, and current management strategies[J]. Tropical Plant Pathology, 2018. |
[98] | Armenta Q A A, Mondaca E C, Sanchez M A A, et al. Efectividad de fungicidas convencionales y biorracionales sobre Sclerotinia sclerotiorum in vitro[J]. Revista Mexicana De Ciencias Pecuarias, 2015, 11(1):2149-2156. |
[99] |
Di Y L, Zhu Z Q, Lu X M, et al. Baseline sensitivity and efficacy of trifloxystrobin against Sclerotinia sclerotiorum[J]. Crop Protection, 2016, 87:31-36.
doi: 10.1016/j.cropro.2016.04.020 URL |
[100] |
Liang H J, Di Y L, Li J L, et al. Baseline sensitivity and control efficacy of fluazinam against Sclerotinia sclerotiorum[J]. European Journal of Plant Pathology, 2015, 142(4):1-9.
doi: 10.1007/s10658-014-0584-5 URL |
[101] | Peltier A J, Bradley C A, Chilvers M I, et al. Biology, yield loss and control of sclerotinia stem rot of soybean[J]. Journal of Integrated Pest Management,(2):B1-B7(7). |
[102] |
Huzar-Novakowiski J, Paul P A, Dorrance A E. Host resistance and chemical control for management of sclerotinia stem rot of soybean in ohio[J]. Phytopathology, 2017, 107(8):937-949.
doi: 10.1094/PHYTO-01-17-0030-R pmid: 28398874 |
[103] | 吴世峰, 亓晶. 大豆菌核病防治技术[J]. 大豆科技, 2011(4):61-62. |
[104] | 王娜. 大豆菌核病生防放线菌的分离与鉴定[D]. 吉林:吉林大学, 2013. |
[105] |
Sumida C H, Daniel J F, Araujod A P C, et al. Trichoderma asperelloides antagonism to nine Sclerotinia sclerotiorum strains and biological control of white mold disease in soybean plants[J]. Biocontrol Science and Technology, 2018, 28(2):142-156.
doi: 10.1080/09583157.2018.1430743 URL |
[106] | Sumida C H, Daniel J F S, Araujod A P C S, et al. Trichoderma asperelloides antagonism to nine Sclerotinia sclerotiorum strains and biological control of white mold disease in soybean plants[J]. Biocontrol Science and Technology. |
[107] | 张淑梅, 王玉霞, 王佳龙, 等. 枯草芽孢杆菌防治大豆菌核病效果初报[J]. 大豆通报, 2006(1):18-19. |
[108] | 葛优优, 刘晓瑜, 窦桂铭, 等. 内生链霉菌ssd49的抑菌活性和防病促生效果[J]. 生物技术通报, 2017, 33(6):121-127. |
[109] | 丁峰. 核盘菌DNA病毒SsHADV-1的基因功能和入侵机制研究[D]. 武汉:华中农业大, 2019. |
[110] | 王源超. 诱饵模式——病原菌致病的全新机制[J]. 南京农业大学学报, 2018, 41(1):1-2. |
[1] | TIAN Yixin, GAO Fengju, CAO Pengpeng, GAO Qi. Dry Matter Accumulation and Transfer and Yield of Summer Soybean in Huang-huai-hai Region: The Response to Sowing Time [J]. Chinese Agricultural Science Bulletin, 2022, 38(6): 20-25. |
[2] | YU Zhonghao, ZHOU Wei, LI Zhigang, LI Ziwen, JIA Juanxia, ZHOU Yaxing. Analysis and Comprehensive Evaluation of Main Traits of Soybean in Inner Mongolia from 2002 to 2021 [J]. Chinese Agricultural Science Bulletin, 2022, 38(34): 14-21. |
[3] | WANG Huanhuan, YANG Qin, PU Hongmei, HE Jin, CHENG Hua, HAN Min, ZHAO Xuechun, WANG Zhiwei, JIN Baocheng. Accuracy Analysis of Soybean Vegetation Coverage Measurement by Photo Line Transect Method [J]. Chinese Agricultural Science Bulletin, 2022, 38(32): 111-118. |
[4] | ZHU Xixia, ZHENG Yuzhen, WANG Haihong, HUANG Bao, PING Xishuan, LIU Tianxue, ZHAO Xia, LI Yuzhen. Different Row Spacing and Reducing Nitrogen Application in Soybean-Maize Intercropping Under Mechanization: Effects on Crop Yield and Photosynthetic Characteristics of Soybean [J]. Chinese Agricultural Science Bulletin, 2022, 38(29): 16-21. |
[5] | LI Xiaoyan, NI Chang, LIU Xu. Effects of Different Control Methods on Root-knot Nematode of Greenhouse Cucumber [J]. Chinese Agricultural Science Bulletin, 2022, 38(25): 130-133. |
[6] | GUO Wen, DAI Xixi, MO Nan, ZHANG Yingqing, YU Chen, TIAN Jiang, GENG Zhide, LI Lu. Soybean Planting and Soybean Commodities’ Import and Export Trade Structure in ASEAN Countries [J]. Chinese Agricultural Science Bulletin, 2022, 38(23): 156-164. |
[7] | GAO Zhongchao, SUN Lei, WANG Lihua, DU Chunying, ZHANG Liguo, ZHANG Jiuming, WANG Wei, GU Wei. Effects of Different Contents of Cd2+ in Soil on Growth and Development of Hemp and Soybean Seedlings [J]. Chinese Agricultural Science Bulletin, 2022, 38(22): 89-92. |
[8] | SUN Xipeng, LI Qi, QIAO Yunfa, HU Zhenghua, ZHANG Xuying, LIU Yuanyuan. Warming and Drought in Hailun of Heilongjiang: Effects on Growth and Development of Soybean [J]. Chinese Agricultural Science Bulletin, 2022, 38(15): 27-33. |
[9] | MA Wenzhou, CHEN Yanyan, WU Hongsheng, WANG Xiaoyun, SUN Qian, DING Jun, LI Yanhui, LIU Zheng, CAI Yuntong, XU Jinyi, ZHANG Jinfu, YIN Wen, ZHANG Xumei, XU Jianhua. Production of Liquid Organic Zinc Fertilizer by Reusing Zinc Ash Waste from Hot Dipped Galvanizing Plant [J]. Chinese Agricultural Science Bulletin, 2022, 38(15): 91-97. |
[10] | ZHAO Ruhao, DING Junnan, YU Shaopeng, WANG Hui, SHI Chuanqi, ZHANG Zhi, MENG Bo. Effects of NaCl Stress on Physiological and Chlorophyll Fluorescence Properties of Wild Soybean Seedlings [J]. Chinese Agricultural Science Bulletin, 2022, 38(14): 23-29. |
[11] | JIANG Longgang, REN Yanli, SHI Jianshuo, GUO Li, WANG Liying, LI Ruonan, WANG Ping. The Difference of Yield and Nutrient Absorption of Soybean Varieties [J]. Chinese Agricultural Science Bulletin, 2022, 38(10): 9-14. |
[12] | Zhao Jingjing, Zhou Nong, Zheng Dianfeng. Low Temperature Stress at Soybean Flowering Stage: Effect on Sucrose Metabolism of Leaves and Yield [J]. Chinese Agricultural Science Bulletin, 2021, 37(9): 1-8. |
[13] | Zan Guangmin, Zhang Ling, Zhang Yanrui, Sheng Yinghua, Zhou Kai, Wang Xianzhi. Establishment of Gas Chromatography for the Determination of Fatty Acids in Soybean [J]. Chinese Agricultural Science Bulletin, 2021, 37(9): 118-124. |
[14] | Tang Lizhong, Xie Yizhi, Sun Xiaocheng, Ouyang Guochun, Lei Gannong, Li Xiaohong, Zhu Wangchong. Effects of Sowing Rate and Fertilization Rate on Yield Formation and Mechanical Harvest Quality of Spring Soybean in South China [J]. Chinese Agricultural Science Bulletin, 2021, 37(8): 1-7. |
[15] | Du Yixin, Shi Niuniu, Ruan Hongchun, Lian Jinfan, Gan Lin, Chen Furu. Study on Pathogenic Fungi Causing Soybean Root Rot in Yinchuan and Field Disease Control Efficiency of Seed Coating [J]. Chinese Agricultural Science Bulletin, 2021, 37(8): 103-109. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||