Chinese Agricultural Science Bulletin ›› 2021, Vol. 37 ›› Issue (29): 34-41.doi: 10.11924/j.issn.1000-6850.casb2021-0330
Previous Articles Next Articles
Wang Manyu1,2(), Liu Naixin3(
), Zhang Fushun3(
)
Received:
2021-03-30
Revised:
2021-05-13
Online:
2021-10-15
Published:
2021-10-29
Contact:
Liu Naixin,Zhang Fushun
E-mail:1531503892@qq.com;2003107@hlju.edu.cn;bill6141@163.com
CLC Number:
Wang Manyu, Liu Naixin, Zhang Fushun. Extraction and Bioactivity of Plant Derived Polysaccharides: A Review[J]. Chinese Agricultural Science Bulletin, 2021, 37(29): 34-41.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2021-0330
植物多糖 | 多糖提取率 | |||||
---|---|---|---|---|---|---|
水提法 | 碱提法 | 酶提法 | 超声法 | 微波法 | 多种技术联合 | |
天麻多糖 | 22.38%[ | 9.67%[ | 50.32%[ | 33.09%[ | 6. 86%[ | 61.27%[ |
枸杞多糖 | 5.87%[ | 7.46%[ | 23.68%[ | 10.00%[ | 7.22%[ | 9.62%[ |
黄芪多糖 | 3.60%[ | 11.7%[ | 29.50%[ | 12.95%[ | 5.45%[ | 13.45%[ |
南瓜多糖 | 3.21%[ | 3.98%[ | 43.40%[ | 28.13%[ | 22.52%[ | 16.44%[ |
植物多糖 | 多糖提取率 | |||||
---|---|---|---|---|---|---|
水提法 | 碱提法 | 酶提法 | 超声法 | 微波法 | 多种技术联合 | |
天麻多糖 | 22.38%[ | 9.67%[ | 50.32%[ | 33.09%[ | 6. 86%[ | 61.27%[ |
枸杞多糖 | 5.87%[ | 7.46%[ | 23.68%[ | 10.00%[ | 7.22%[ | 9.62%[ |
黄芪多糖 | 3.60%[ | 11.7%[ | 29.50%[ | 12.95%[ | 5.45%[ | 13.45%[ |
南瓜多糖 | 3.21%[ | 3.98%[ | 43.40%[ | 28.13%[ | 22.52%[ | 16.44%[ |
多糖来源 | 提取方法 | 主要单糖组分含量摩尔比 | 生物活性 | 活性能力/% | 参考文献 |
---|---|---|---|---|---|
兰州百合鳞茎 | 微波辅助 | 甘露糖:葡萄糖=5.2:4.9 | 清除羟自由基能力 | 46.03 | [ |
清除DPPH自由基能力 | 67.77 | ||||
清除羟超氧阴离子能力 | 43.01 | ||||
超声辅助 | 甘露糖:葡萄糖=5.1:4.7 | 清除羟自由基能力 | 79.81 | ||
清除DPPH自由基能力 | 61.70 | ||||
清除羟超氧阴离子能力 | 56.22 | ||||
超声复合酶 | 甘露糖:葡萄糖=4.8:5.3 | 清除羟自由基能力 | 85.80 | ||
清除DPPH自由基能力 | 57.06 | ||||
清除羟超氧阴离子能力 | 70.80 | ||||
冬虫夏草菌丝体 | 酶提取 | 甘露糖:糖葡萄糖:半乳糖=4.2:1.0:4.3 | 抑制小鼠肿瘤细胞S180 | 44.97 | [ |
微波辅助 | 甘露糖:糖葡萄糖:半乳糖=4.0:1.0:4.0 | 抑制小鼠肿瘤细胞S180 | 67.25 | ||
超声辅助 | 甘露糖:糖葡萄糖:半乳糖=3.8:1.0:3.9 | 抑制小鼠肿瘤细胞S180 | 47.25 | ||
金华佛手 | 水提法 | 阿拉伯糖:半乳糖:葡萄糖:果糖:半乳糖醛酸=54.07:15.06:14.33:2.22:14.32 | 抑制乙醇脱氢酶 | 18.60 | [ |
复合酶法 | 鼠李糖:阿拉伯糖:半乳糖:葡萄糖:木糖:甘露糖:果糖:半乳糖醛酸=1.13:37.75:24.79:17.18:3.18:4.22:1.13:10.42 | 激活乙醇脱氢酶 | 35.79 | ||
超声辅助法 | 阿拉伯糖:半乳糖:葡萄糖:木糖:甘露糖:半乳糖醛酸=47.24:29.49:9.22:2.30:2.53:9.22 | 激活乙醇脱氢酶 | 28.35 | ||
微波辅助法 | 鼠李糖:阿拉伯糖:半乳糖:葡萄糖:木糖:甘露糖:半乳糖醛酸=0.87:32.47:20.35:31.39:2.16:1.94:10.82 | 激活乙醇脱氢酶 | 21.52 | ||
超声-微波协同 | 阿拉伯糖:半乳糖:葡萄糖:木糖:甘露糖:半乳糖醛酸=30.46:18.03:35.07:4.61:3.41:8.42 | 激活乙醇脱氢酶 | 46.58 |
多糖来源 | 提取方法 | 主要单糖组分含量摩尔比 | 生物活性 | 活性能力/% | 参考文献 |
---|---|---|---|---|---|
兰州百合鳞茎 | 微波辅助 | 甘露糖:葡萄糖=5.2:4.9 | 清除羟自由基能力 | 46.03 | [ |
清除DPPH自由基能力 | 67.77 | ||||
清除羟超氧阴离子能力 | 43.01 | ||||
超声辅助 | 甘露糖:葡萄糖=5.1:4.7 | 清除羟自由基能力 | 79.81 | ||
清除DPPH自由基能力 | 61.70 | ||||
清除羟超氧阴离子能力 | 56.22 | ||||
超声复合酶 | 甘露糖:葡萄糖=4.8:5.3 | 清除羟自由基能力 | 85.80 | ||
清除DPPH自由基能力 | 57.06 | ||||
清除羟超氧阴离子能力 | 70.80 | ||||
冬虫夏草菌丝体 | 酶提取 | 甘露糖:糖葡萄糖:半乳糖=4.2:1.0:4.3 | 抑制小鼠肿瘤细胞S180 | 44.97 | [ |
微波辅助 | 甘露糖:糖葡萄糖:半乳糖=4.0:1.0:4.0 | 抑制小鼠肿瘤细胞S180 | 67.25 | ||
超声辅助 | 甘露糖:糖葡萄糖:半乳糖=3.8:1.0:3.9 | 抑制小鼠肿瘤细胞S180 | 47.25 | ||
金华佛手 | 水提法 | 阿拉伯糖:半乳糖:葡萄糖:果糖:半乳糖醛酸=54.07:15.06:14.33:2.22:14.32 | 抑制乙醇脱氢酶 | 18.60 | [ |
复合酶法 | 鼠李糖:阿拉伯糖:半乳糖:葡萄糖:木糖:甘露糖:果糖:半乳糖醛酸=1.13:37.75:24.79:17.18:3.18:4.22:1.13:10.42 | 激活乙醇脱氢酶 | 35.79 | ||
超声辅助法 | 阿拉伯糖:半乳糖:葡萄糖:木糖:甘露糖:半乳糖醛酸=47.24:29.49:9.22:2.30:2.53:9.22 | 激活乙醇脱氢酶 | 28.35 | ||
微波辅助法 | 鼠李糖:阿拉伯糖:半乳糖:葡萄糖:木糖:甘露糖:半乳糖醛酸=0.87:32.47:20.35:31.39:2.16:1.94:10.82 | 激活乙醇脱氢酶 | 21.52 | ||
超声-微波协同 | 阿拉伯糖:半乳糖:葡萄糖:木糖:甘露糖:半乳糖醛酸=30.46:18.03:35.07:4.61:3.41:8.42 | 激活乙醇脱氢酶 | 46.58 |
[1] | 王珊, 黄胜阳. 植物多糖提取液脱蛋白方法的研究进展[J]. 食品科技, 2012, 37(9):188-191. |
[2] | 孙小童, 代翠红, 崔杰, 等. 食用红甜菜多糖的提取及纯化[J]. 中国甜菜糖业, 2018(4):1-6. |
[3] | 史淑芝, 魏文强, 程大友, 等. 食用红甜菜粗多糖提取工艺的研究[J]. 中国甜菜糖业, 2010(4):18-20. |
[4] | 张兴桃, 高贵珍. 多糖研究进展[J]. 宿州学院学报, 2005, 20(5):85-88. |
[5] | 正香松. 組織細胞多糖類に關する免疫生物學的研究[J]. 日本消化機病學會雜誌, 1948, 46(1-2):7-8. |
[6] | Huo J, Wu J, Zhao M, et al. Immunomodulatory activity of a novel polysaccharide extracted from Huangshui on THP-1 cells through NO production and increased IL-6 and TNF- α expression[J]. Food Chemistry, 2020, 330. |
[7] |
Ma L, Chen H, Zhu W, et al. Effect of different drying methods on physicochemical properties and antioxidant activities of polysaccharides extracted from mushroom Inonotus obliquus[J]. Food Research International, 2013, 50(2):633-640.
doi: 10.1016/j.foodres.2011.05.005 URL |
[8] |
Liao D W, Cheng C, Liu J P, et al. Characterization and antitumor activities of polysaccharides obtained from ginger (Zingiber officinale) by different extraction methods[J]. International Journal of Biological Macromolecules, 2020, 152:894-903.
doi: 10.1016/j.ijbiomac.2020.02.325 URL |
[9] | Zhao Y, Chen X, Jia W, et al. Extraction, isolation, characterisation, antioxidant and anti‐fatigue activities of Pleurotus eryngii polysaccharides[J]. International Journal of Food Science & Technology, 2020, 55(6) :2492-2508. |
[10] |
Sun Y, Liu Z, Song S, et al. Anti-inflammatory activity and structural identification of a sulfated polysaccharide CLGP4 from Caulerpa lentillifera[J]. International Journal of Biological Macromolecules, 2020, 146:931-938.
doi: 10.1016/j.ijbiomac.2019.09.216 URL |
[11] | 邹承涵, 陈文, 王湘君, 等. 不同方法提取星虫多糖及抗氧化活性研究综述[J]. 内江科技, 2020, 41(2):106,112. |
[12] |
Chen L, Huang G. The antioxidant activity of derivatized cushaw polysaccharides[J]. International Journal of Biological Macromolecules, 2019, 128:1-4.
doi: 10.1016/j.ijbiomac.2019.01.091 URL |
[13] |
Shang H, Wu H, Dong X, et al. Effects of different extraction methods on the properties and activities of polysaccharides from Medicago sativa L. and extraction condition optimization using response surface methodology[J]. Process Biochemistry, 2019, 82:179-188.
doi: 10.1016/j.procbio.2019.03.027 URL |
[14] | 唐森, 梁冰娜, 覃逸明, 等. 响应面优化白芨水溶性多糖提取工艺的研究[J]. 山东化工, 2019, 48(22):3-7. |
[15] | 胡丽玲, 刘世柱, 吴志君, 等. 水提法同步提取分离香菇中蛋白质和多糖的工艺研究[J]. 食药用菌, 2019, 27(5):316-319. |
[16] | Ye J, Hua X, Zhao Q, et al. Chain conformation and rheological properties of an acid-extracted polysaccharide from peanut sediment of aqueous extraction process[J]. Carbohydrate Polymers, 2020, 228. |
[17] |
Shakhmatov E G, Belyy V A, Makarova E N. Structure of acid-extractable polysaccharides of tree greenery of Picea abies[J]. Carbohydrate Polymers, 2018, 199:320-330.
doi: S0144-8617(18)30818-X pmid: 30143136 |
[18] | 闫景坤. 抗氧化新型冬虫夏草胞外多糖的制备、结构与溶液特征研究[D]. 广州:华南理工大学, 2010. |
[19] | 董洪新, 吕作舟. 阿魏侧耳酸提水溶性多糖的研究[J]. 微生物学报, 2004, 44(1):101-103. |
[20] |
Peasura N, Laohakunjit N, Kerdchoechuen O, et al. Characteristics and antioxidant of Ulva intestinalis sulphated polysaccharides extracted with different solvents[J]. International Journal of Biological Macromolecules, 2015, 81:912-919.
doi: 10.1016/j.ijbiomac.2015.09.030 URL |
[21] |
Wu G H, Hu T, Li Z Y, et al. In vitro antioxidant activities of the polysaccharides from Pleurotus tuber-regium (Fr.) Sing[J]. Food Chemistry, 2014, 148:351-356.
doi: 10.1016/j.foodchem.2013.10.029 URL |
[22] | 朱强, 蒋建茹, 林欣大. 酸碱法提取黄粉虫中壳聚糖的要点[J]. 科技创新导报, 2014(14):238-238. |
[23] | 俞明君, 李苗苗, 王金浩, 等. 杏鲍菇水溶性和碱溶性多糖提取工艺研究[J]. 食用菌, 2017, 39(6):78-80. |
[24] | 王兰英, 唐萌, 徐盼菊, 等. 4种方法提取花脸香蘑胞内多糖及其理化性质比较研究[J]. 河南工业大学学报:自然科学版, 2017, 38(3):61-66. |
[25] |
Ye J, Hua X, Zhao Q, et al. Characteristics of alkali-extracted peanut polysaccharide-protein complexes and their ability as Pickering emulsifiers[J]. International Journal of Biological Macromolecules, 2020, 162:1178-1186.
doi: 10.1016/j.ijbiomac.2020.06.245 URL |
[26] | 娄佳, 景鸿燕, 白梦婷, 等. 枸杞多糖的提取及其抗衰老研究进展[J]. 现代农业科技, 2020(14):210,216. |
[27] |
Bhotmange D U, Wallenius J H, Singhal R S, et al. Enzymatic extraction and characterization of polysaccharide from Tuber aestivum[J]. Bioactive Carbohydrates and Dietary Fibre, 2017, 10:1-9.
doi: 10.1016/j.bcdf.2017.02.001 URL |
[28] | 尹艳, 高文宏, 于淑娟. 多糖提取技术的研究进展[J]. 食品工业科技, 2007(2):248-250. |
[29] | 王如涛, 吴绵斌, 林建平, 等. 植物多糖分离提取技术的研究进展[J]. 中国生物工程杂志, 2013, 33(7):118-123. |
[30] | Chen G, Fang C, Chen X, et al. High-pressure ultrasonic-assisted extraction of polysaccharides from Mentha haplocalyx: Structure, functional and biological activities[J]. Industrial Crops & Products, 2019, 130:273-284. |
[31] | 陈灿辉, 江文韬, 林彤, 等. 竹笋多糖的提取、结构鉴定与生理功效研究进展[J]. 江苏农业学报, 2019, 35(6):1513-1520. |
[32] |
Ruizhan C, Xing R, Wei Y, et al. Ultrasonic disruption extraction, characterization and bioactivities of polysaccharides from wild Armillaria mellea[J]. International journal of biological macromolecules, 2020, 156:1491-1502.
doi: S0141-8130(19)38360-6 pmid: 31785299 |
[33] | 郭慧静. 蒲公英多糖的提取、分离纯化、鉴定及其生物活性的初步研究[D]. 石河子:石河子大学, 2019. |
[34] | Lin T, Liu Y, Lai C, et al. The effect of ultrasound assisted extraction on structural composition, antioxidant activity and immunoregulation of polysaccharides from Ziziphus jujuba Mill var. spinosa seeds[J]. Industrial Crops & Products. 2018, 125. |
[35] |
Chen X, Fang D, Zhao R, et al. Effects of ultrasound-assisted extraction on antioxidant activity and bidirectional immunomodulatory activity of Flammulina velutipes polysaccharide[J]. International Journal of Biological Macromolecules, 2019, 140:505-514.
doi: S0141-8130(19)33268-4 pmid: 31437508 |
[36] |
Chemat F, Fabiano-Tixier A S, Vian M A, et al. Solvent-free extraction of food and natural products[J]. Trends in Analytical Chemistry, 2015, 71:157-168.
doi: 10.1016/j.trac.2015.02.021 URL |
[37] | 王仁舒, 冯静, 王盼, 等. 微波技术在提取天然产物化学成分中的运用[J]. 化工管理, 2015(18):99. |
[38] | Sadeghi A, Hakimzadeh V, Karimifar B. Microwave Assisted Extraction of Bioactive Compounds from Food: A Review[J]. International Journal of Food Science and Nutrition Engineering, 2017, 7(1):19-27. |
[39] | 胡勇刚. 紫草素脂质体和紫草多糖工业化生产技术研究[D]. 广州:华南理工大学, 2017. |
[40] |
Al-Dhabi Naif Abdullah, Ponmurugan K. Microwave assisted extraction and characterization of polysaccharide from waste jamun fruit seeds[J]. International journal of biological macromolecules, 2020, 152:1157-1163.
doi: S0141-8130(19)35350-4 pmid: 31751731 |
[41] | Li T, Li Y, Peng J, et al. Microwave puffing assisted extraction of polysaccharides from Dendrobium devonianum[J]. Journal of Food Processing and Preservation, 2018, 42(2):1-10. |
[42] |
Hao W, Junxiang Z, Wenchao D, et al. Ultrasound-assisted enzymatic extraction and antioxidant activity of polysaccharides from pumpkin (Cucurbita moschata)[J]. Carbohydrate polymers, 2014, 113:314-324.
doi: 10.1016/j.carbpol.2014.07.025 pmid: 25256490 |
[43] |
Abuduwaili A, Rozi P, Mutailifu P, et al. Effects of different extraction techniques on physicochemical properties and biological activities of polysaccharides from Fritillaria pallidiflora Schrenk[J]. Process Biochemistry, 2019, 83:189-197.
doi: 10.1016/j.procbio.2019.05.020 |
[44] | 张亚楠, 董旭然. 秋葵多糖提取及抗氧化性的研究进展[J]. 现代农村科技, 2019(10):66-67. |
[45] |
Xiao Z, Zhang Q, Dai J, et al. Structural characterization, antioxidant and antimicrobial activity of water-soluble polysaccharides from bamboo (Phyllostachys pubescens Mazel) leaves[J]. International Journal of Biological Macromolecules, 2020, 142:432-442.
doi: 10.1016/j.ijbiomac.2019.09.115 URL |
[46] |
Wang N, Zhang Y, Wang X, et al. Antioxidant property of water-soluble polysaccharides from Poria cocos Wolf using different extraction methods[J]. International Journal of Biological Macromolecules, 2016, 83:103-110.
doi: 10.1016/j.ijbiomac.2015.11.032 URL |
[47] | Su Y, Li L. Structural characterization and antioxidant activity of polysaccharide from four auriculariales[J]. Carbohydrate Polymers, 2020, 229. |
[48] |
Kungel P, Correa V G, Corrêa R G, et al. Antioxidant and antimicrobial activities of a purified polysaccharide from yerba mate (Ilex paraguariensis)[J]. International Journal of Biological Macromolecules, 2018, 114:1161-1167.
doi: 10.1016/j.ijbiomac.2018.04.020 URL |
[49] | Wang Y, Li Y, Ma X, et al. Extraction, purification, and bioactivities analyses of polysaccharides from Glycyrrhiza uralensis[J]. Industrial Crops & Products, 2018, 122. |
[50] |
Ai S, Fan X, Fan L, et al. Extraction and chemical characterization of Angelica sinensis polysaccharides and its antioxidant activity[J]. Carbohydrate Polymers, 2013, 94(2):731-736.
doi: 10.1016/j.carbpol.2013.02.007 URL |
[51] |
Preethi S, Mary Saral A. Screening of natural polysaccharides extracted from the fruits of Pithecellobium dulce as a pharmaceutical adjuvant[J]. International Journal of Biological Macromolecules, 2016, 92:347-356.
doi: S0141-8130(16)30829-7 pmid: 27422043 |
[52] |
Khan T, Date A, Chawda H, et al. Polysaccharides as potential anticancer agents—A review of their progress[J]. Carbohydrate Polymers, 2019, 210:412-428.
doi: 10.1016/j.carbpol.2019.01.064 URL |
[53] | 胡盼盼. 乳酸菌胞外多糖发酵条件优化及抗肿瘤活性的研究[J]. 中国酿造, 2020, 39(8):187-192. |
[54] |
Kan L, Chai Y, Li X, et al. Structural analysis and potential anti-tumor activity of Sporisorium reilianum (Fries) polysaccharide[J]. International Journal of Biological Macromolecules, 2020, 153:986-994.
doi: 10.1016/j.ijbiomac.2019.10.228 URL |
[55] | 何俊平, 李晓菁, 孟迪, 等. 板栗种仁多糖的提取纯化及体外抗肿瘤活性筛选[J]. 食品工业科技, 2020, 41(22):134-141,149. |
[56] |
Niu J, Wang S, Wang B, et al. Structure and anti-tumor activity of a polysaccharide from Bletilla ochracea Schltr[J]. International Journal of Biological Macromolecules. 2020, 154:1548-1555.
doi: 10.1016/j.ijbiomac.2019.11.039 URL |
[57] |
Li Y, Xin Y, Xu F, et al. Maca polysaccharides: Extraction optimization, structural features and anti-fatigue activities[J]. International Journal of Biological Macromolecules, 2018, 115:618-624.
doi: 10.1016/j.ijbiomac.2018.04.063 URL |
[58] |
Tan W, Yu K-q, Liu Y-y, et al. Anti-fatigue activity of polysaccharides extract from Radix Rehmanniae Preparata[J]. International Journal of Biological Macromolecules, 2012, 50(1):59-62.
doi: 10.1016/j.ijbiomac.2011.09.019 URL |
[59] |
Li J, Sun Q, Meng Q, et al. Anti-fatigue activity of polysaccharide fractions from Lepidium meyenii Walp. (maca)[J]. International Journal of Biological Macromolecules, 2017, 95:1305-1311.
doi: 10.1016/j.ijbiomac.2016.11.031 URL |
[60] | Meiju Z, Hongzhu Z, Xiaomin D, et al. Analysis of the anti-fatigue activity of polysaccharides from Spirulina platensis: role of central 5-hydroxytryptamine mechanisms[J]. Food & function, 2020, 11(2):1826-1834. |
[61] | 刘兴龙, 赵迎春, 陈雪艳, 等. 黑参多糖抗疲劳作用的分子机制[J]. 食品科学, 2020, 41(5):173-179. |
[62] |
Hao Sun, Xueqin Ni, Xu Song, et al. Fermented Yupingfeng polysaccharides enhance immunity by improving the foregut microflora and intestinal barrier in weaning rex rabbits[J]. Applied Microbiology and Biotechnology, 2016, 100(18):8105-8120.
doi: 10.1007/s00253-016-7619-0 pmid: 27260288 |
[63] |
Ling G, Yong LS, Ai HW, et al. Effect of polysaccharides extract of rhizoma atractylodis macrocephalae on thymus, spleen and cardiac indexes, caspase-3 activity ratio, Smac/DIABLO and HtrA2/Omi protein and mRNA expression levels in aged rats[J]. Molecular Biology Reports, 2012, 39(10):9285-9290.
doi: 10.1007/s11033-012-1677-x pmid: 22777209 |
[64] | 李荣乔, 贾东升, 温春秀, 等. 槐花多糖对免疫抑制小鼠免疫功能的影响研究[J]. 食品研究与开发, 2016, 37(24):155-159. |
[65] | 任琦琦, 任皓威, 杨翠翠, 等. 干酪乳杆菌胞外多糖诱导小鼠骨髓来源树突细胞成熟以及分泌IL-6、TGF-β和IL-23[J]. 食品科学, 2019, 40(5):175-182. |
[66] | 李婉雁, 曹楠, 田允波, 等. 白术多糖通过Toll样受体4/核因子-κB信号通路调控雏鸡脾脏淋巴细胞免疫功能[J]. 动物营养学报. 2019, 31(11):5192-5201. |
[67] | Li S, Wang XF, Ren LN, et al. Protective effects of γ-irradiated Astragalus polysaccharides on intestinal development and mucosal immune function of immunosuppressed broilers[J]. Poultry ence. 2019, 98(12):6400-6410. |
[68] | He Jing Liu, Guo Huan, Wei Si Yu, et al. Effects of different extraction methods on the structural properties and bioactivities of polysaccharides extracted from Qingke (Tibetan hulless barley)[J]. Journal of Cereal Science, 2020, 92. |
[69] |
Rajagopal HM, Manjegowda SB, Serkad C, et al. A modified pectic polysaccharide from turmeric (Curcuma longa) with antiulcer effects via anti-secretary, mucoprotective and IL-10 mediated anti-inflammatory mechanisms[J]. International Journal of Biological Macromolecules, 2018, 118:864-880.
doi: S0141-8130(18)31451-X pmid: 29924982 |
[70] |
Gossell-Williams M, Davis A, O"Connor N. Inhibition of testosterone-induced hyperplasia of the prostate of sprague-dawley rats by pumpkin seed oil[J]. Journal of Medicinal Food, 2006, 9(2):284-286.
pmid: 16822218 |
[71] |
Yin H M, Wang S N, Nie S P, et al. Coix polysaccharides: Gut microbiota regulation and immunomodulatory[J]. Bioactive Carbohydrates and Dietary Fibre, 2018, 16:53-61.
doi: 10.1016/j.bcdf.2018.04.002 URL |
[72] |
Gudi R, Perez N, Johnson B M, et al. Complex dietary-polysaccharide modulates gut immune function and microbiota, and promotes protection from autoimmune diabetes[J]. Immunology, 2019, 157(1):70-85.
doi: 10.1111/imm.2019.157.issue-1 URL |
[73] |
Zhou R, Cui M, Wang Y, et al. Isolation, structure identification and anti-inflammatory activity of a polysaccharide from Phragmites rhizoma[J]. International Journal of Biological Macromolecules, 2020, 161:810-817.
doi: 10.1016/j.ijbiomac.2020.06.124 URL |
[74] | 陈留勇. 黄桃水溶性多糖提取、分离纯化、结构测定和生物活性研究[D]. 沈阳:沈阳农业大学, 2004. |
[75] | 原菲. 银杏多糖的提取分离、结构鉴定及活性测定[D]. 广州:暨南大学, 2010. |
[76] | 韩丹. 白芨多糖的提取分离、分子量测定及结构研究[D]. 延吉:延边大学, 2013. |
[77] | 程龙. 南瓜籽多糖的提取纯化、结构鉴定以及生物活性的测定[D]. 哈尔滨:东北农业大学, 2018. |
[78] |
Wu H, Shang H, Guo Y, et al. Comparison of different extraction methods of polysaccharides from cup plant (Silphium perfoliatum L.)[J]. Process Biochemistry. 2020, 90:241-248.
doi: 10.1016/j.procbio.2019.11.003 URL |
[79] | 王庆, 李丹丹, 潘芸芸, 等. 提取方法对天麻多糖提取率及其抗氧化活性的影响[J]. 食品与机械. 2017, 33(9):146-150. |
[80] | 孙亚男. 天麻多糖分离纯化及理化性质研究[D]. 重庆:西南大学, 2007. |
[81] | 李志英, 双少敏, 张海容, 等. 微波法提取天麻多糖的研究[J]. 山西大学学报:自然科学版, 2008(4):573-576. |
[82] | 汪瑞敏, 朱秋劲, 张春花, 等. 不同提取方法对天麻多糖抗氧化活性的影响[J]. 食品科技, 2015, 40(3):208-213. |
[83] | 胡仲秋, 刘建党, 王保玲. 枸杞多糖的碱液提取工艺研究[J]. 西北农林科技大学学报:自然科学版, 2008(10):173-178. |
[84] | 王岩岩, 陈东海, 车烈权, 等. 纤维素酶提取枸杞多糖及工艺优化[J]. 食品科技, 2007(3):104-106. |
[85] | 孙汉文, 刘占锋. 枸杞多糖的超声波辅助水提取与分级纯化[J]. 食品工业科技, 2009, 30(3):230-233. |
[86] | 庞亚茹, 朱风涛, 吴茂玉, 等. 微波辅助提取枸杞多糖工艺条件优化[J]. 食品研究与开发, 2016, 37(11):50-53. |
[87] | 张倩, 李书启. 不同提取方法对枸杞多糖提取率及抗氧化活性的影响[J]. 江苏农业科学, 2019, 47(3):169-173. |
[88] | 李红民, 黄仁泉, 王亚洲. 提高黄芪多糖提取收率的工艺研究[J]. 西北大学学报:自然科学版, 2000(6):509-510. |
[89] | 闫巧娟. 蒙古黄芪中多糖、皂甙及活性蛋白的提取分离[D]. 北京:中国农业大学, 2005. |
[90] | 李海平, 陈瑞战, 金辰光, 等. 黄芩多糖的超声提取工艺优化及抗氧化活性研究[J]. 食品工业科技, 2014, 35(16):237-242. |
[91] | 何强, 张峻松. 黄芩多糖提取方法的研究[J]. 安徽农学通报(下半月刊), 2011, 17(20):24-25,84. |
[92] | 邓桂兰. 不同提取方法对南瓜多糖提取率及抗氧化活性的影响[J]. 粮食与油脂, 2017, 30(9):98-100. |
[93] | 张彦军, 李梅. 热水提取及碱法提取对南瓜多糖提取率的影响[J]. 榆林学院学报, 2020, 30(2):32-35. |
[94] | 苗敬芝, 董玉玮, 陈尚龙. 超声波协同酶法提取南瓜多糖及其体外抗氧化活性研究[J]. 徐州工程学院学报:自然科学版, 2017, 32(3):8-15. |
[95] | 徐丛玥, 林款, 梁征, 等. 不同提取方法对米邦塔仙人掌粗多糖体外抗氧化性的影响[J]. 食品工业科技, 2018, 39(3):56-60. |
[96] | 高晗. 水提和碱提法制备黄秋葵多糖及其对肠道菌群的影响[D]. 合肥:合肥工业大学, 2019. |
[97] | 刘佳乐, 黄德春, 程抒劼, 等. 枣多糖不同提取工艺优化及其免疫活性初探[J]. 食品与营养科学, 2019, 8(2):142-154. |
[98] |
Chen X, Chen G, Wang Z, et al. A comparison of a polysaccharide extracted from ginger (Zingiber officinale) stems and leaves using different methods: preparation, structure characteristics, and biological activities[J]. International Journal of Biological Macromolecules. 2020, 151:635-649.
doi: 10.1016/j.ijbiomac.2020.02.222 URL |
[99] | Long X, Mengxia Z, Daofeng C, et al. Juniperus pingii var. wilsonii acidic polysaccharide: Extraction, characterization and anticomplement activity[J]. Carbohydrate Polymers. 2020, 231(C). |
[100] | 黄玉龙, 高清雅, 全婷, 等. 不同提取方法对兰州百合多糖结构及抗氧化活性的影响[J]. 现代食品科技, 2018, 34(11):126-131,194. |
[101] |
Zhu Z Y, Dong F, Liu X, et al. Effects of extraction methods on the yield, chemical structure and anti-tumor activity of polysaccharides from Cordyceps gunnii mycelia[J]. Carbohydrate Polymers, 2016, 140:461-471.
doi: 10.1016/j.carbpol.2015.12.053 URL |
[102] | 陈孝云, 王洪新, 吕文平, 等. 不同提取方法对佛手多糖性质和乙醇脱氢酶活性的影响[J]. 安徽农业科学, 2018, 46(23):131-135. |
[1] | LIU Qingsong, JIA Yanli, XIAO Yu, GUO Zhiding, JI Mingmei, ZHAO Zhongxiang, HUANG Sufang, YUE Mingqiang, LIU Zhen, YAN Xudong, XU Yupeng. Effects of Salt Stress on Physiological and Growth Traits of Alfalfa [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 96-101. |
[2] | SONG Yingfang, HONG Huangxi, LI Zhuoli, CHENG Zhiyong, ZHANG Lixiang. Tea Saponin: Research Progress on Its Effect of Pest Control and Synergism [J]. Chinese Agricultural Science Bulletin, 2022, 38(31): 119-124. |
[3] | HAN Wenhao, YAN Zhenmin, WU Yanbing, CAI Guanghui, ZHAO Lilin, LI Wei, CHEN Zenglong. A Review on Penthiopyrad: A Novel Pyrazole Amide Pesticide [J]. Chinese Agricultural Science Bulletin, 2022, 38(24): 124-130. |
[4] | XIE Hongbao, GUAN Shiyang, CHEN Yimin, SUI Yueyu, PENG Bo, TANG Boyu, JIAO Xiaoguang. Characteristics of Soil Nitrogen Leaching in Facility Vegetable Fields and the Control Measures: A Review [J]. Chinese Agricultural Science Bulletin, 2022, 38(23): 82-87. |
[5] | ZHANG Yaowen, ZHAO Pengtao, LI Jiming, ZHAO Xiaoguang, SHANG Yi, ZHANG Zhenlan, ZHAI Zhouping, LI Longhua. Changes of Photosynthetic Characteristics of Black Wheat and the Influence on Yield [J]. Chinese Agricultural Science Bulletin, 2022, 38(21): 7-16. |
[6] | Wu Yongling, Wei Xinping, Li Xiaoling, Wei Ting, Hu Meiqian. The Effect of Peony Seed Meal Extract on Soil of Continuous Cropping and Control of Gaeumannomyces graminis [J]. Chinese Agricultural Science Bulletin, 2021, 37(26): 133-139. |
[7] | Jiang Shuo, Wan Lu, Xu Zhexiang, Yan Jiajia, Zheng Chunying. Research Progress on Flavonoids of Cannabis sativa L [J]. Chinese Agricultural Science Bulletin, 2021, 37(17): 120-128. |
[8] | Jinsheng Duan, Yang Shen, Mei Wang, Xu Dong, Mingna Sun, Tongchun Gao. Chiral Amidine Fungicides: Research Progress [J]. Chinese Agricultural Science Bulletin, 2020, 36(9): 107-112. |
[9] | Shi Wei, Zhu Guoyong, Sun Mingfa, Wang Aimin, Chen Zhongbing, Yan Guohong. Influence Factors and Mechanism of Rice Grain Filling: Research Progress [J]. Chinese Agricultural Science Bulletin, 2020, 36(8): 1-7. |
[10] | Wang Bin, Huang Shengyi, Min Qingwen, Yang Wanquan, Li Heyao, Zhang Bitian. Production Efficiency and Its Influence Factors of Crop Planting Patterns in Chengdu Plain—A Case Study of Pidu District [J]. Chinese Agricultural Science Bulletin, 2020, 36(6): 140-148. |
[11] | Wang Yuchao, Li Hong, Wang Ruijun, Xi Xiaoqian. Transplanting Techniques with Plastic Film Mulching Affect Growth and Fresh Ear Yield of Fresh Corn in Alpine Region [J]. Chinese Agricultural Science Bulletin, 2020, 36(5): 14-17. |
[12] | Liu Hao, Wang Haimei. Spatial and Temporal Variation Characteristics and Attribution Analysis of Potential Evapotranspiration in Hulunbuir 1961-2018 [J]. Chinese Agricultural Science Bulletin, 2020, 36(36): 58-66. |
[13] | Song Xifang, Yao Hairong, Zhang Xiaofei, Zhang Jianguo, Chen Ni, Chang Xiaojian, Zhang Chenyang. Grey Correlation Analysis of the Influence Factors of Grain Yield in Shaanxi: Empirical Research Based on Panel Data [J]. Chinese Agricultural Science Bulletin, 2020, 36(28): 158-164. |
[14] | Xiao Fengjin, Zhang Xuguang, Liao Yaoming, Liu Qiufeng. Sunshine Duration in China: Variation Characteristics and Its Influence [J]. Chinese Agricultural Science Bulletin, 2020, 36(20): 92-100. |
[15] | Chen Jian’ai, Jia Mengying, Chen Weijing. Water Content in PDA: Influence on Growth and Development of Trichoderma aureoviride 1010 Conidia on Solid Medium [J]. Chinese Agricultural Science Bulletin, 2020, 36(15): 106-114. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||