Chinese Agricultural Science Bulletin ›› 2021, Vol. 37 ›› Issue (35): 88-92.doi: 10.11924/j.issn.1000-6850.casb2021-0870
Special Issue: 畜牧兽医
Previous Articles Next Articles
Li Yan1(), Fu Yao2, Chen Yong3, Wei Zheng1(
)
Received:
2021-09-06
Revised:
2021-11-08
Online:
2021-12-15
Published:
2022-01-07
Contact:
Wei Zheng
E-mail:liyan@moahr.com;361051060@qq.com
CLC Number:
Li Yan, Fu Yao, Chen Yong, Wei Zheng. Calcium Homeostasis and Application of Negative DCAD Diet in Cows During Close-up Period[J]. Chinese Agricultural Science Bulletin, 2021, 37(35): 88-92.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2021-0870
[1] | 郭光礼. 经产奶牛围产前期DCAB日粮饲喂与产后瘫痪浅析[J]. 山东畜牧兽医, 2015, 36(2):26-27. |
[2] | 李启照, 孙维浩, 卫强. 围产前期奶牛日粮中添加过瘤胃脂肪对其干物质采食量和泌乳性能的影响[J]. 中国饲料, 2019(6):55-59. |
[3] | 彭传文, 祁敏丽, 董永, 等. 围产前期饲喂阴离子盐日粮对奶牛产后代谢疾病发病率的影响[J]. 中国乳业, 2020(10):34-36. |
[4] |
Chamberlin W G, Middleton J R, Spain J N, et al. Subclinical hypocalcemia, plasma biochemical parameters, lipid metabolism, postpartum disease, and fertility in postparturient dairy cows[J]. Journal of Dairy Science, 2013, 96(11):7001-7013.
doi: S0022-0302(13)00647-4 pmid: 24054301 |
[5] | 陈子宁, 李妍, 高艳霞, 等. 围产前期日粮能量水平对荷斯坦奶牛产后生产性能和血液指标的影响[J]. 畜牧兽医学报, 2015, 46(11):2002-2009. |
[6] | 穆淑琴, 李鹏. 奶牛围产期低血钙症的发生及营养调控措施[J]. 中国牛业科学, 2011, 37(4):41-43. |
[7] | Risco C A, Reynolds J P, Hird D. Uterine prolapse and hypocalcemia in dairy cows[J]. Journal of the American Veterinary Medical Association, 1984, 185(12):1517-1519. |
[8] |
Shock D A, Roche S M, Genore R, et al. A pilot study to evaluate the effect of a novel calcium and vitamin D-containing oral bolus on serum calcium levels in Holstein dairy cows following parturition[J]. Veterinary Medicine: Research and Reports, 2019, 10:151.
doi: 10.2147/VMRR URL |
[9] |
Martinez N, Risco C A, Lima F S, et al. Evaluation of peripartal calcium status, energetic profile, and neutrophil function in dairy cows at low or high risk of developing uterine disease[J]. Journal of Dairy Science, 2012, 95(12):7158-7172.
doi: 10.3168/jds.2012-5812 pmid: 23021755 |
[10] |
Venjakob P L, Borchardt S, Heuwieser W. Hypocalcemia—Cow-level prevalence and preventive strategies in German dairy herds[J]. Journal of Dairy Science, 2017, 100(11):9258-9266.
doi: S0022-0302(17)30797-X pmid: 28865859 |
[11] |
Venjakob P L, Pieper L, Heuwieser W, et al. Association of postpartum hypocalcemia with early-lactation milk yield, reproductive performance, and culling in dairy cows[J]. Journal of Dairy Science, 2018, 101(10):9396-9405.
doi: S0022-0302(18)30662-3 pmid: 30031579 |
[12] | Horst R L, Goff J P, Reinhardt T A. Role of vitamin D in calcium homeostasis and its use in prevention of bovine periparturient paresis[J]. Acta Veterinaria Scandinavica Supplementum, 2003, 97(97):35. |
[13] | Horst R L, Littledike E T. Comparison of plasma concentrations of vitamin D and its metabolites in young and aged domestic animals[J]. Comparative biochemistry and physiology. B, Comparative biochemistry, 1982, 73(3):485-489. |
[14] | Goff J P, Horst R L. Role of acid-base physiology on the pathogenesis of parturient hypocalcaemia (milk fever)--the DCAD theory in principal and practice[J]. Acta Veterinaria Scandinavica Supplementum, 2003, 97(97):51. |
[15] |
Rodriguez M, Salmeron M D, Martin-Malo A, et al. A New Data Analysis System to Quantify Associations between Biochemical Parameters of Chronic Kidney Disease-Mineral Bone Disease[J]. Plos One, 2016, 11(1):e0146801.
doi: 10.1371/journal.pone.0146801 URL |
[16] | Nelson C D. Vitamin D Metabolism in Dairy Cattle and Implications for Dietary Requirements [C]//Florida Ruminant Nutition Symposium, 2014. |
[17] | Pike J W, Lee S M, Benkusky N A, et al. Genomic Mechanisms Governing Mineral Homeostasis and the Regulation and Maintenance of Vitamin D Metabolism[J]. JBMR plus, 2021, 5(1):e10433. |
[18] |
Goff J P, Koszewski N J. Comparison of 0.46% calcium diets with and without added anions with a 0.7% calcium anionic diet as a means to reduce periparturient hypocalcemia[J]. Journal of Dairy Science, 2018, 101(6):5033-5045.
doi: 10.3168/jds.2017-13832 URL |
[19] | Kim M H, Kim S H, Park H W, et al. Effects of calcium and genistein on body fat and lipid metabolism in high fat-induced obese mice[J]. Journal of Nutrition and Health, 2006, 39(8):733-741. |
[20] |
Park J H, Jeong J S, Lee S I, et al. Influence of Dietary Particle Size and Sources of Calcium and Vitamin D3 on Production Performance, Egg Quality and Blood Calcium Concentration of ISA Brown Laying Hens[J]. Animal Nutrition and Feed Technology, 2017, 17(1):1-12.
doi: 10.5958/0974-181X.2017.00001.4 URL |
[21] |
Brömme H J, Dargel R. Effect of in vivo and in vitro application of glucagon, insulin and epinephrine on Ca++-transport properties of liver mitochondria[J]. Acta biologica et medica Germanica, 1979, 38(10):1365-1377.
pmid: 162024 |
[22] |
Lean I J, Ondarza M, Sniffen C J, et al. Meta-analysis to predict the effects of metabolizable amino acids on dairy cattle performance[J]. Journal of Dairy Science, 2018, 101(1):340-364.
doi: S0022-0302(17)30993-1 pmid: 29128215 |
[23] |
Lean I J, Santos J, Block E, et al. Effects of prepartum dietary cation-anion difference intake on production and health of dairy cows: A meta-analysis[J]. Journal of Dairy Science, 2019, 102(3):2103-2133.
doi: S0022-0302(18)31114-7 pmid: 30594362 |
[24] |
Martinez N, Rodney R M, Block E, et al. Effects of prepartum dietary cation-anion difference and source of vitamin D in dairy cows: Health and reproductive responses[J]. Journal of Dairy Science, 2017, 101(3):2563-2578.
doi: 10.3168/jds.2017-13740 URL |
[25] |
Lean I J, Degaris P J, Celi P, et al. Influencing the future: interactions of skeleton, energy, protein and calcium during late gestation and early lactation[J]. Animal Production Science, 2014, 54(9):1177-1189.
doi: 10.1071/AN14479 URL |
[26] |
Mcart J A A, Oetzel G R. A stochastic estimate of the economic impact of oral calcium supplementation in postparturient dairy cows[J]. Journal of Dairy Science, 2015, 98(10):7408-7418.
doi: 10.3168/jds.2015-9479 URL |
[27] |
Lean I J, Degaris P J, Mcneil D M, et al. Hypocalcemia in Dairy Cows: Meta-analysis and Dietary Cation Anion Difference Theory Revisited[J]. Journal of Dairy Science, 2006, 89(2):669-684.
pmid: 16428636 |
[28] | 甄玉国, 赵巍, 王兰惠, 等. 围产前期不同钙水平日粮对奶牛血钙水平及钙代谢的影响[J]. 饲料工业, 2016, 37(10):37-42. |
[29] |
Santos J E P, Lean I J, Golder H, et al. Meta-analysis of the effects of prepartum dietary cation-anion difference on performance and health of dairy cows[J]. Journal of dairy science, 2019, 102(3):2134-2154.
doi: S0022-0302(19)30003-7 pmid: 30612801 |
[30] |
Charbonneau E, Chouinard P Y, Tremblay G F, et al. Hay to reduce dietary cation-anion difference for dry dairy cows[J]. Journal of dairy science, 2008, 91(4):1585-1596.
doi: 10.3168/jds.2007-0775 pmid: 18349251 |
[31] |
Constable P D, Megahed A A, Hiew M W H. Measurement of urine pH and net acid excretion and their association with urine calcium excretion in periparturient dairy cows[J]. Journal of dairy science, 2019, 102(12):11370-11383.
doi: S0022-0302(19)30830-6 pmid: 31548071 |
[32] |
Blanc C D, Van der List M, Aly S S, et al. Blood calcium dynamics after prophylactic treatment of subclinical hypocalcemia with oral or intravenous calcium[J]. Journal of dairy science, 2014, 97(11):6901-6906.
doi: 10.3168/jds.2014-7927 pmid: 25200776 |
[33] |
Kerwin A L, Ryan C M, Leno B M, et al. Effects of feeding synthetic zeolite A during the prepartum period on serum mineral concentration, oxidant status, and performance of multiparous Holstein cows[J]. Journal of dairy science, 2019, 102(6):5191-5207.
doi: S0022-0302(19)30367-4 pmid: 31005325 |
[1] | DONG Wencai, LIU Xianbin, LI Hongmei, ZHAO Shuangmei, BAO Jinmei, SHEN Jianping, LIANG Fang, LU Mei. Effects of Calcium Supply with Varying Levels on the Growth and Development of Woody Ornamental Plants [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 42-50. |
[2] | ZHAO Tianxin, E Shengzhe, YUAN Jinhua, WANG Yuxuan, YAO Jiaxuan. Interaction Between Calcium and Organic Carbon in Soil: Research Progress and Prospect [J]. Chinese Agricultural Science Bulletin, 2022, 38(14): 77-81. |
[3] | Tu Yuting, Huang Jichuan, Wu Xuena, Liao Weijie, Peng Zhiping. Effects of Biochar-calcium Peroxide Composite Particles on Benzoic Acid Allelochemical Stress to Tomato Seedlings [J]. Chinese Agricultural Science Bulletin, 2021, 37(8): 39-47. |
[4] | Wang Yanwen, Luo Na, Wang Guangyin. Effects of Combined Application of Brassinolide and Exogenous Calcium on Growth, Fruit Setting and Yield of Over-winter Tomato in Solar Greenhouse [J]. Chinese Agricultural Science Bulletin, 2021, 37(4): 43-48. |
[5] | Dai Linjian, Chen Yu’an, Liu Chenxiang, Zhong Jun. Effects of Clcium Cyanamide and Its Combined Application with Biochar and Cake Fertilizer on Enzyme Activity and Total Microorganism Biomass in Tobacco Planting Soil [J]. Chinese Agricultural Science Bulletin, 2021, 37(34): 97-102. |
[6] | Chai Guanqun, Liu Guihua, Luo Muxinjian, Qin Song, Fan Chengwu. Effect of Selenium and Passivator Application on Available Cadmium Passivation in Soil and Cadmium Reduction in Rice [J]. Chinese Agricultural Science Bulletin, 2021, 37(32): 102-107. |
[7] | Jia Xiaoxia, Qi Enfang, Liu Shi, Huang Wei, Lv Heping, Wen Guohong, Ma Sheng. Different Components of MS Medium: Effects on the Growth of Potato Virus-free Test-tube Seedlings [J]. Chinese Agricultural Science Bulletin, 2021, 37(18): 25-30. |
[8] | Liu Zhaoyang, Wang Ronghua, Wang Weicheng, Liu Xiaoyue, Liu Na, Liu Xiaohan, Liu Dali, Wu Zedong, Wang Maoqian. Calcium Nitrate and Magnesium Sulfate Combination: Effect on Sugarbeet Seed Germination [J]. Chinese Agricultural Science Bulletin, 2021, 37(14): 21-26. |
[9] | Dong Huan, Lou Chunrong, Zhang Qing, Han Yingzuo, Wang Hui. Regulation of Peat pH Value: Effect on Its Available Nutrients, and Seedling Growth of Tomato and Hot Pepper [J]. Chinese Agricultural Science Bulletin, 2020, 36(7): 55-62. |
[10] | Zhang Feng, Li Yangyi, Zhang Xiaodong, Li Shiqiang. Effects of Silicon and Calcium Fertilizer on Fruit Quality of Korla Fragrant Pear [J]. Chinese Agricultural Science Bulletin, 2020, 36(4): 56-60. |
[11] | Ma Cunjin, Ren Shiwei, Zheng Lei, Chen Jianqiu. Effects of Different Dosages of Silicon-Calcium-Potassium-Magnesium Fertilizer on Root Development and Tobacco Quality [J]. Chinese Agricultural Science Bulletin, 2020, 36(31): 7-12. |
[12] | Xu Muguo, Ding Huaping, Liu Zhongmei, Chen Guiliang, Chen Yongchuan, Li Xiaoqing. Measuring Methods of Exchangeable Calcium and Magnesium in Acid and Neutral Soil of Rubber Plantation [J]. Chinese Agricultural Science Bulletin, 2020, 36(18): 73-79. |
[13] | Hu Dandan, Wang Huiming, Wu Changqiang, Hu Qiuping, Song Huijie, Liu Jinyou, Hu Huiwen. Boron Magnesium Calcium Soil Conditioner: Effects on Acidified Soil Inhibition in Red Soil Dry Land [J]. Chinese Agricultural Science Bulletin, 2020, 36(11): 82-85. |
[14] | . Optimization and Improvement of Detection Conditions for Potassium, Calcium and Magnesium in Plants by Hydrochloric Acid Extraction-AAS Method [J]. Chinese Agricultural Science Bulletin, 2019, 35(9): 46-52. |
[15] | . Effect of Different Varieties of Silicon-calcium-potassium-magnesium Fertilizer on Banana Yield, Quality and Soil Nutrients [J]. Chinese Agricultural Science Bulletin, 2019, 35(4): 40-45. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||