Chinese Agricultural Science Bulletin ›› 2022, Vol. 38 ›› Issue (31): 83-92.doi: 10.11924/j.issn.1000-6850.casb2021-1093
Special Issue: 生物技术
Previous Articles Next Articles
SHA Gang1(), YIN Hongbin1, CAO Hongjie1,2, XIE Lihong1, HUANG Qingyang1, XU Mingyi1,2(
)
Received:
2021-11-15
Revised:
2022-01-22
Online:
2022-11-05
Published:
2022-10-27
Contact:
XU Mingyi
E-mail:735799464@qq.com;primrose327@163.com
CLC Number:
SHA Gang, YIN Hongbin, CAO Hongjie, XIE Lihong, HUANG Qingyang, XU Mingyi. Methane Oxidation Flux in Volcanic Forest Soil of Different Geological Ages and Its Influencing Factors[J]. Chinese Agricultural Science Bulletin, 2022, 38(31): 83-92.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2021-1093
采样点 | 形成时间 | 植被类型 | 土壤类型 |
---|---|---|---|
老黑山(LHS) | 300年 | 针阔混交林 | 火山灰土、火山石质土 |
东焦得布山(DJDB) | 17万~19万年 | 落叶阔叶林 | 火山灰土、暗棕壤性火山灰土 |
北格拉球山(BGLQ) | 70万~ 80万年 | 落叶阔叶林 | 火山灰土、暗棕壤性火山灰土 |
山口湖(SKH) | 25亿年 | 落叶阔叶林 | 暗棕壤 |
采样点 | 形成时间 | 植被类型 | 土壤类型 |
---|---|---|---|
老黑山(LHS) | 300年 | 针阔混交林 | 火山灰土、火山石质土 |
东焦得布山(DJDB) | 17万~19万年 | 落叶阔叶林 | 火山灰土、暗棕壤性火山灰土 |
北格拉球山(BGLQ) | 70万~ 80万年 | 落叶阔叶林 | 火山灰土、暗棕壤性火山灰土 |
山口湖(SKH) | 25亿年 | 落叶阔叶林 | 暗棕壤 |
采样点 | a | b | 参数 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
N | R2 | P | ||||||||||
S | N | S | N | S | N | S | N | |||||
LHS | 18.922 | 13.605 | 0.0513 | 0.0819 | 14 | 0.4268 | 0.6293 | <0.007 | <0.002 | |||
DJDB | 23.663 | 27.042 | 0.1069 | 0.1069 | 14 | 0.7558 | 0.5766 | <0.001 | <0.003 | |||
BGLQ | 27.818 | 25.794 | 0.0748 | 0.1081 | 14 | 0.7014 | 0.8206 | <0.001 | <0.001 | |||
SKH | 28.352 | 27.65 | 0.0835 | 0.0865 | 14 | 0.7403 | 0.5089 | <0.001 | <0.005 |
采样点 | a | b | 参数 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
N | R2 | P | ||||||||||
S | N | S | N | S | N | S | N | |||||
LHS | 18.922 | 13.605 | 0.0513 | 0.0819 | 14 | 0.4268 | 0.6293 | <0.007 | <0.002 | |||
DJDB | 23.663 | 27.042 | 0.1069 | 0.1069 | 14 | 0.7558 | 0.5766 | <0.001 | <0.003 | |||
BGLQ | 27.818 | 25.794 | 0.0748 | 0.1081 | 14 | 0.7014 | 0.8206 | <0.001 | <0.001 | |||
SKH | 28.352 | 27.65 | 0.0835 | 0.0865 | 14 | 0.7403 | 0.5089 | <0.001 | <0.005 |
采样点 | a | b | 参数 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
N | R2 | P | |||||||||
S | N | S | N | S | N | S | N | ||||
LHS | 2.0468 | -0.9592 | 13.325 | 54.002 | 14 | 0.3563 | 0.3352 | <0.05 | <0.05 | ||
DJDB | -3.0945 | -2.3355 | 178.01 | 162.69 | 14 | 0.14 | 0.5306 | >0.05 | <0.01 | ||
BGLQ | -4.259 | -1.5426 | 188.57 | 145.54 | 14 | 0.3877 | 0.241 | <0.05 | >0.05 | ||
SKH | -2.4915 | -1.371 | 138.37 | 122.08 | 14 | 0.2776 | 0.1508 | >0.05 | >0.05 |
采样点 | a | b | 参数 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
N | R2 | P | |||||||||
S | N | S | N | S | N | S | N | ||||
LHS | 2.0468 | -0.9592 | 13.325 | 54.002 | 14 | 0.3563 | 0.3352 | <0.05 | <0.05 | ||
DJDB | -3.0945 | -2.3355 | 178.01 | 162.69 | 14 | 0.14 | 0.5306 | >0.05 | <0.01 | ||
BGLQ | -4.259 | -1.5426 | 188.57 | 145.54 | 14 | 0.3877 | 0.241 | <0.05 | >0.05 | ||
SKH | -2.4915 | -1.371 | 138.37 | 122.08 | 14 | 0.2776 | 0.1508 | >0.05 | >0.05 |
AP | AK | TOC | TN | NH4+-N | DOC | SMBC | SMBN | |
---|---|---|---|---|---|---|---|---|
L-S | 0.145 | -0.500* | -0.549* | -0.382 | 0.485* | -0.066 | 0.475* | 0.450 |
D-S | -0.164 | -0.260 | -0.567* | -0.338 | 0.848** | -0.078 | 0.375 | 0.264 |
B-S | -0.280 | 0.616** | 0.404 | 0.342 | 0.186 | 0.905** | 0.803** | 0.523* |
S-S | -0.669** | -0.137 | -0.686** | -0.724** | 0.276 | 0.548* | 0.579* | 0.135 |
L-N | -0.154 | -0.147 | 0.054 | -0.054 | 0.320 | 0.047 | 0.280 | 0.380 |
D-N | -0.575* | 0.073 | -0.564* | -0.493 | 0.080 | 0.670** | -0.380 | -0.378 |
B-N | -0.472* | -0.458 | -0.381 | -0.438 | 0.040 | 0.032 | 0.082 | 0.027 |
S-N | -0.317 | -0.798** | -0.396 | -0.457 | 0.308 | -0.339 | -0.621* | -0.552* |
AP | AK | TOC | TN | NH4+-N | DOC | SMBC | SMBN | |
---|---|---|---|---|---|---|---|---|
L-S | 0.145 | -0.500* | -0.549* | -0.382 | 0.485* | -0.066 | 0.475* | 0.450 |
D-S | -0.164 | -0.260 | -0.567* | -0.338 | 0.848** | -0.078 | 0.375 | 0.264 |
B-S | -0.280 | 0.616** | 0.404 | 0.342 | 0.186 | 0.905** | 0.803** | 0.523* |
S-S | -0.669** | -0.137 | -0.686** | -0.724** | 0.276 | 0.548* | 0.579* | 0.135 |
L-N | -0.154 | -0.147 | 0.054 | -0.054 | 0.320 | 0.047 | 0.280 | 0.380 |
D-N | -0.575* | 0.073 | -0.564* | -0.493 | 0.080 | 0.670** | -0.380 | -0.378 |
B-N | -0.472* | -0.458 | -0.381 | -0.438 | 0.040 | 0.032 | 0.082 | 0.027 |
S-N | -0.317 | -0.798** | -0.396 | -0.457 | 0.308 | -0.339 | -0.621* | -0.552* |
[1] |
DENG Y, CUI X, LUKE C, et al. Aerobic methanotroph diversity in Riganqiao peatlands on the Qinghai-Tibetan Plateau[J]. Environmental microbiology reports, 2013, 5:566-574.
doi: 10.1111/1758-2229.12046 pmid: 23864571 |
[2] | FORSTER P, RAMASWAMY V, ARTAXO P, et al. Changes in atmospheric constituents and in radiative forcing[A]//. SOLOMON Sed. Climate change 2007: The physical science basis: Working group I to the fourth assessment report of the intergovernmental panel on climate change[M].Cambridge, UK: Cambridge University Press, 2007:129-234. |
[3] | STOCKER T, QIN D, PLATTNER G, et al. Climate Change 2013-The physical science basis:working group I. Contribution to the fifth assessment report of the Intergovernmental panel on climate change[M]. Cambridge, UK and New York, NY, USA: Cambridge University Press, 2014. |
[4] |
NAZARIES L, MURRELL J, MILLARD P, et al. Methane, microbes and models: fundamental understanding of the soil methane cycle for future predictions[J]. Environmental microbiology, 2013, 15:2395-2417.
doi: 10.1111/1462-2920.12149 pmid: 23718889 |
[5] | KNIEF C. Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker[J]. Frontiers in microbiology, 2015,6. |
[6] | BORKEN W, BRUMME R. Methane uptake by temperate forest soils: functioning and management of European beech ecosystems[J]. Ecological studies, 2009, 208:369-385. |
[7] | KERRY R G, PATRA S, GOUDA S, et al. Microbes and their role in drought tolerance of agricultural food crops[J]. Microbial biotechnology, 2018,253-273. |
[8] |
AMIN A, AHMED I, SALAM N, et al. Diversity and distribution of thermophilic bacteria in hot springs of Pakistan[J]. Microbial ecology, 2017, 74(1):116-127.
doi: 10.1007/s00248-017-0930-1 pmid: 28105510 |
[9] |
SHMAREVA M, DORONINA N, TARLACHKOV S, et al. Methylophaga muralis Bur 1, a haloalkaliphilic methylotroph isolated from the Khilganta soda lake (southern Transbaikalia, Buryat Republic)[J]. Microbiology, 2018, 87(1):33-46.
doi: 10.1134/S0026261718010162 URL |
[10] | KOU Y, LI J, WANG Y, et al. Scale-dependent key drivers controlling methane oxidation potential in Chinese grassland soils[J]. Soil biology and biochemistry, 2017,111,104-114. |
[11] |
WANG Y, CHEN H, ZHU Q, et al. Soil methane uptake by grasslands and forests in China[J]. Soil biology and biochemistry, 2014, 74:70-81.
doi: 10.1016/j.soilbio.2014.02.023 URL |
[12] |
MARTINS C, NAZARIES L, MACDONALD C, et al. Water availability and abundance of microbial groups are key determinants of greenhouse gas fluxes in a dryland forest ecosystem[J]. Soil biology and biochemistry, 2015, 86:5-16.
doi: 10.1016/j.soilbio.2015.03.012 URL |
[13] |
PRAEG N, WAGNER A, ILLMER P. Plant species, temperature, and bedrock affect net methane flux out of grassland and forest soils[J]. Plant and soil, 2017, 410:193-206.
doi: 10.1007/s11104-016-2993-z URL |
[14] |
LIVESLEY S, KIESE R, MIEHLE P, et al. Soil-atmosphere exchange of greenhouse gases in a Eucalyptus marginata woodland, a clover-grass pasture, and Pinus radiata and Eucalyptus globulus plantations[J]. Global change biology, 2009, 15:425-440.
doi: 10.1111/j.1365-2486.2008.01759.x URL |
[15] | CHIRI E, NAUER P, RAINER E, et al. High temporal and spatial variability of atmospheric-methane oxidation in Alpine glacier-forefield soils[J]. Applied environmental microbiology, 2017, 83(18). |
[16] |
HO A, DE ROY K, THAS O, et al. The more, the merrier: heterotroph richness stimulates methanotrophic activity[J]. ISME Journal, 2014, 8:1945-1948.
doi: 10.1038/ismej.2014.74 pmid: 24785289 |
[17] |
URBANOVA M, SNAJDR J, BALDRIAN P. Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees[J]. Soil biology and biochemistry, 2015, 84:53-64.
doi: 10.1016/j.soilbio.2015.02.011 URL |
[18] |
ARONSON E, ALLISON S, HELLIKER B. Environmental impacts on the diversity of methane-cycling microbes and their resultant function[J]. Frontiers in microbiology, 2013, 4:225-240.
doi: 10.3389/fmicb.2013.00225 pmid: 23966984 |
[19] | WEST A, BROOKS P, FISK M, et al. Landscape patterns of CH4 fluxes in an alpine tundra ecosystem[J]. Biogeochemistry, 1999, 45(3):243-264. |
[20] | 李齐, 陈文寄, 李大明, 等. 五大连池地区火山岩年代学研究[J]. 地质评论, 1999, 45(8):393-399. |
[21] | WOOD C. Volcanoes of North America: United States and Canada[M]. New York: Cambridge University Press,1992. |
[22] | SCHAETZL R, ANDERSON S. Soils: Genesis and geomorphology[M]. New York: Cambridge University Press, 2005. |
[23] | 田慎重, 宁堂原, 迟淑筠, 等. 不同耕作措施的温室气体排放日变化及最佳观测时间[J]. 生态学报, 2012, 32(3):879-888. |
[24] | 齐玉春, 罗辑, 董云社, 等. 贡嘎山山地暗针叶林带森林土壤温室气体N2O和CH4排放研究[J]. 中国科学D辑, 2002, 32(11):934-941. |
[25] | 周存宇, 张德强, 王跃思, 等. 鼎湖山针阔叶混交林地表温室气体排放的日变化[J]. 生态学报, 2004, 24(8):1738-1741. |
[26] | 庄静静, 张劲松, 孟平, 等. 华北低山丘陵区人工林土壤CH4通量测定代表性时段研究[J]. 生态环境学报, 2015(11):1791-1798. |
[27] |
XIAO D, WANG M, WANG Y, et al. Fluxes of soil carbon dioxide, nitrous oxide and fire damp in broad- leaved/Korean pine forest[J]. Journal of forestry research, 2004, 15(2):107-112.
doi: 10.1007/BF02856743 URL |
[28] | 杨小丹, 马秀枝, 周梅, 等. 寒温带大兴安岭渐伐林森林土壤CH4通量的研究[J]. 内蒙古农业大学学报, 2010, 31(3):52-59. |
[29] |
BORKEN W, DAVIDSON E, SAVAGE K, et al. Effect of summer throughfall exclusion, summer drought, and winter snow cover on methane fluxes in a temperate forest soil[J]. Soil biology & biochemistry, 2006, 38(6):1388-1395.
doi: 10.1016/j.soilbio.2005.10.011 URL |
[30] | 肖冬梅, 王姬. 长白山阔叶红松林土壤氮化亚氮和甲烷的通量研究[J]. 应用生态学报, 2004, 15(10):1855-1859. |
[31] | 刘实, 王传宽, 许飞. 4种温带森林非生长季土壤二氧化碳、甲烷和氧化亚氮通量[J]. 生态学报, 2010, 30(15):4075-4084. |
[32] |
NOLL M, FRENZEL P, CONRAD R. Selective stimulation of type I methanotrophs in a rice paddy soil by urea fertilization revealed by RNA-based stable isotope probing[J]. Fems microbiology ecology, 2008, 65:125-132.
doi: 10.1111/j.1574-6941.2008.00497.x pmid: 18544098 |
[33] | 周存宇, 周国逸, 王迎红, 等. 鼎湖山针阔叶混交林地表CH4通量[J]. 生态环境, 2005, 14(3):333-335. |
[34] | DONG Y, SCHARFFEL D, LOBERT J, et al. Fluxes of CO2, CH4 and N2O from a temperate forest soil: the effects of leaves and humus layers[J]. Tellus, 1998, 50:243-252. |
[35] |
刘玲玲, 刘允芬, 温学发, 等. 千烟洲红壤丘陵区人工针叶林土壤CH4排放通量[J]. 植物生态学报, 2008, 32(2):431-439.
doi: 10.3773/j.issn.1005-264x.2008.02.022 |
[36] | 何介南, 谢寄托, 肖毅峰, 等. 莽山土壤有机碳及其空间分布格局[J]. 中南林业科技大学学报, 2014, 34(4):72-76. |
[37] |
TATE K. Soil methane oxidation and land-use change-from process to mitigation[J]. Soil biology and biochemistry, 2015, 80:260-272.
doi: 10.1016/j.soilbio.2014.10.010 URL |
[38] | SINGH J, SINGH S, RAGHUBANSHI A, et al. Effect of soil nitrogen, carbon and moisture on methane uptake by dry tropical forest soils[J]. Plant & soil, 1997, 196(1):115-121. |
[39] |
NESBIT S, BREITENBECK G. A laboratory study of factors influencing methane uptake by soils[J]. Agriculture, ecosystems & environment, 1992, 41(1):39-54.
doi: 10.1016/0167-8809(92)90178-E URL |
[40] |
HÜTSCH B. Methane oxidation in non-flooded soils as affected by crop production- invited paper[J]. European journal of agronomy, 2001, 14(4):237-260.
doi: 10.1016/S1161-0301(01)00110-1 URL |
[1] | LAI Xifu, JIAO Xudong, WANG Duowen, REN Xuehua, TU Lifang. Diversity and Temporal Dynamics of Moths Under an Ultraviolet Lamp in Nursery in Wuwei Area [J]. Chinese Agricultural Science Bulletin, 2022, 38(22): 104-109. |
[2] | WENG Xiaohong, SUI Xin. Research on Forest Soil Microbial Diversity Based on Web of Science [J]. Chinese Agricultural Science Bulletin, 2022, 38(10): 157-164. |
[3] | Ren Yukun. Spatial Variability Characteristics of Forest Soil Factors in Shanxi Province [J]. Chinese Agricultural Science Bulletin, 2021, 37(32): 42-50. |
[4] | Jiang Hongyan, Chen Shichun, Liu Xiang, Hu Xiang, Peng Ping, Xia Ji’an, Wang Xiaoqing. Forest Ecological Model on the Spider Community and Leafhopper Population in Tea Plantation [J]. Chinese Agricultural Science Bulletin, 2020, 36(22): 111-115. |
[5] | . The temporal dynamics and structure of insect community in the rotation field of flue-cured tobacco and oilseed rape [J]. Chinese Agricultural Science Bulletin, 2019, 35(14): 122-128. |
[6] | . The Characteristics Comparison of Soil Active Organic Carbon and Nitrogen of 4 Kinds of Vegetation Types in Yaoluoping [J]. Chinese Agricultural Science Bulletin, 2014, 30(4): 23-28. |
[7] | Niu Xinli, Wu Houzhang, Zou Yunding, Bi Shoudong,Ren Cuinong, Liu Chengshe, Zhao Yanhong, Tao Jinchang, Wang Wenjun. The Spatial Distribution Pattern and its Temporal Dynamics of Bemisia tabaci Adult Population Inhabiting on the Cucumbers [J]. Chinese Agricultural Science Bulletin, 2007, 23(7): 457-457. |
[8] | Guo Yanna,He Qinjian,Yuan Ling. Summarization of Forest Soil Fertility [J]. Chinese Agricultural Science Bulletin, 2004, 20(3): 143-143. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||