[1]	Jua X T, Xing G X, Chen X P, et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems[J]. PNAS, 2009,106(9):3041-3046. 
[2]	王勃,徐静.计算机视觉技术在苹果叶片营养诊断上的应用[J].农机化研究, 2008(3):238-239. 
[3]	袁道军,刘安国,刘志雄,等.利用计算机视觉技术进行作物生长监测的研究进展[J].农业网络信息,2007(2):21-25. 
[4]	刘洪见,郑丽敏,廖树华,等.计算机视觉技术在农作物氮素营养诊断上的应用研究进展[J].麦类作物学报,2005,25(5):117-121. 
[5]	李锦卫,廖桂平.作物图像光照亮度补偿方法[J].农机化研究,2012(8):26-30. 
[6]	李锦卫,廖桂平,金晶,等.基于灰度截留分割与十色模型的马铃薯表面缺陷检测方法[J].农业工程学报,2010,26(10):236-242. 
[7]	王访,廖桂平,王晓乔,等.基于多重分形理论的油菜缺素叶片特征提取[J].农业工程学报,2013,29(24):181-189. 
[8]	Wendt H, Roux S, Jaffard S, et al. Wavelet leaders and bootstrap for multifractal analysis of images[J].Signal Process,2009,6(89):1100-1114. 
[9]	Abry P, Wendt H, Jaffard S. When Van Gogh meets Mandelbrot: multifractal classication of painting’s texture[J].Signal Process,2013,93(3):554-572. 
[10]	Stojic T, Reljin I, Reljin B. Adaptation of multifractal analysis to segmentation of micro-calcifications in digital mammograms[J].Physica A, 2006,367(15):494-508. 
[11]	Kantelhardt J W, Zschiegner S A, Bunde E K, et al. Multifractal detrended fluctuation analysis of non- stationary time series[J].Physica A: Statistical Mechanics and its Applications,2002(316):87-114. 
[12]	Gu G F, Zhou W X. Detrended fluctuation analysis for fractals and multifractals in higher dimensions[J].Physical Review E,74,061104,2006. 
[13]	Wang F, Liao G P, Li J W, et al. Multifractal detrended fluctuation analysis for clustering structures of electricity price periods[J].Physica A: Statistical Mechanics and its Applications,2013,392(22):5723-5734. 
[14]	Zhou Y, Leung Y. Multifractal temporally weighted detrended fluctuation analysis and its application in the analysis of scaling behavior in temperature series[J].Journal of Statistical Mechanics: Theory and Experiment, 2010, 2010(2010):361-394. 
[15]	Wang F, Li Z S, Liao G P. Multifractal Detrended Fluctuation Analysis for Image Texture Feature Representation[J].International Journal of Pattern Recognition and Artificial Intelligence,2014,28(3):145-505. 
[16]	Wang F, Li Z S, Li J W. Local Multifractal Detrended Fluctuation Analysis for Non-stationary Image''s Texture Segmentation[J].Applied Surface Science,2014,233:116-125. 
[17]	Wang F, Li J W, Shi W, et al. Leaf image segmentation method based on multifractal detrended fluctuation analysis[J].Journal of Applied Physics, 2013, 114(21):214905-214905-9. 
[18]	Alessio E, Carbone A, Castelli G, et al. Second-order moving average and scaling of stochastic time series[J].The European Physical Journal B-Condensed Matter and Complex Systems,2002,27(2):197-200. 
[19]	Gu G F, Zhou W X. Detrending moving average algorithm for multifractals[J].Physical Review E, 2010, 82(1 Pt 1):1859-1860. 
[20]	Schumann A Y, Kantelhardt J W. Multifractal moving average analysis and test of multifractal model with tuned correlations[J].Physica A: Statistical Mechanics and its Applications,2011,390(14):2637-2654. 
[21]	Wang Y, Wu C, Pan Z. Multifractal detrending moving average analysis on the US Dollar exchange rates[J].Physica A: Statistical Mechanics and its Applications,2011,390(20):3512-3523. 
[22]	Wang F, Wang L, Zou R B. Multifractal detrended moving average analysis for texture representation[J].Chaos: An Interdisciplinary Journal of Nonlinear Science, 2014, 24(3):5880-5885. 
[23]	Shi W, Zou R B, Wang F, et al. A new image segmentation method based on multifractal detrended moving average analysis[J].Physica A, Volume 432, 2015,432:197-205. 
[24]	Duda R O, Hart P E, Stork D G. Pattern classi?cation[M].2nd.New York:John Wiley & Sons,2001. 
[25]	Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: theory and applications[J].Neuro-computing,2006,12(1):489-501. 
[26]	Vladimir N. Vapnik. 统计学习理论[M].北京:电子工业出版社,2009. 
[27]	Nello Cristianini, JohnShawe, Taylor. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods[M].北京:电子工业出版社,2004. 
[28]	Ho, Kam T. Random Decision Forest. Proc. of the 3rd Int''l Conf. on Document Analysis and Recognition[C].Montreal,Canada,August 14-18,1995:278-282. 
[29]	Bremner D, Demaine E, Erickson J, et al. Output-sensitive algorithms for computing nearest-neighbor decision boundaries[J].Discrete and Computational Geometry,2005,33(4):593-604. 
[30]	李锦卫. 基于计算机视觉的水稻、油菜叶色-氮营养诊断机理与建模[D].长沙:湖南农业大学,2010,12. 
[31]	Hastie T, Tibshirani R, Friedman J等译. 统计学习基础-数据挖掘[M].北京:电子工业出版社, 2007.
  |