[1]	Davila-Gomez F, Chuck-Hernandez C, Perez-Carrillo E, et al. Evaluation of bioethanol production from five different varieties of sweet and forage sorghums (Sorghum bicolor (L) Moench)[J].Ind. Crops Prod.,2011,33(3):611-616. 
[2]	Sipos B, Reczey J, Somorai Z, et al. Sweet sorghum as feedstock for ethanol production: enzymatic hydrolysis of steam--pretreated bagasse[J].Appl. Biochem. Biotechnol.,2009,153(1):151-162. 
[3]	McCollum T, McCuistion K, Bean B. Brown midrib and photoperiod sensitive forage sorghums//. Proceedings of the 2005 plains nutrition council spring conference[C]. San Antonio, Texas A&M University Agricultural Research and Extension Center Amarillo, 2005. 
[4]	Calvino M, Messing J. Sweet sorghum as a model system for bioenergy crops[J]. Curr. Opin. Biotechnol., 2012, 23(3):323-329. 
[5]	Renny-Byfield S, Wendel J F. Doubling down on genomes: polyploidy and crop plants[J]. Am. J. Bot., 2014, 101(10):1711-1725. 
[6]	王炜,崔明九,秦春林,等.基于文献计量的甜高粱研究态势分析[J].草业科学,2016,33(9):1846-1858. 
[7] 	刘乃新,高谊,张文彬,等.2015年英文文献甜高粱研究动向[J].中国糖料,2016,38(6):52-54. 
[8]	Herder G D , G Van Isterdael, T Beeckman, et al. The roots of a new green revolution[J]. Trends Plant Sci., 2010,15(11):600-607. 
[9]	Comas L H, Mueller K E, Taylor L L, et al. Beerling. Evolutionary patterns and biogeochemical significance of angiosperm root traits[J]. Int.J. Plant Sci., 2012,173(6):584-595. 
[10]	Hirel B, Gouis J L, Ney B, et al. Gallais. The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches[J]. J. Exp. Bot., 2007, 58(9):2369-2387. 
[11]	Anami S E, Zhang L M, Xia Y, et al. Sweet sorghum ideotypes: genetic improvement of the biofuel syndrome[J]. Food & Energy Security, 2015, 4(3):159-177. 
[12]	Fakrudin B, Kavil S, Girma Y, et al. Molecular mapping of genomic regions harbouring QTLs for root and yield traits in sorghum (Sorghum bicolor L. Moench) [J]. Physiol. Mol. Biol. Plants, 2013, 19(3):409-419. 
[13]	Mace E, Singh V, Van Oosterom E, et al. QTL for nodal root angle in sorghum (Sorghum bicolor L. Moench) co-locate with QTL for traits associated with drought adaptation[J]. Theor. Appl. Genet., 2012, 124(1):97-109. 
[14]	Li R, Han Y, Lv P, et al. Molecular mapping of the brace root traits in sorghum (Sorghum bicolor L. Moench) [J]. Breed. Sci., 2014, 64(2):193-198. 
[15]	McHale M, Eamens A L, Finnegan E J, et al. A 22--nt artificial microRNA mediates widespread RNA silencing in Arabidopsis[J]. Plant J., 2013, 76(3):519-529. 
[16]	Burks P S, Kaiser C M, Hawkins E M, et al. Genomewide Association for Sugar Yield in Sweet Sorghum[J]. Crop Science, 2015, 55(5):2138-2148. 
[17]	Ackerly D, Knight C, Weiss S, et al. Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: contrasting patterns in species level and community level analyses[J]. Oecologia, 2002, 130(3):449-457. 
[18]	Reddy R N, R Madhusudhana, S Mohan M, et al. Mapping QTL for grain yield and other agronomic traits in post--rainy sorghum Sorghum bicolor (L.) Moench[J]. Theor. Appl. Genet., 2013, 126(8):1921-1939. 
[19]	Lu X P, Yun J F, Gao C P, et al. Quantitative trait loci analysis of economically important traits in Sorghum bicolor x S. sudanense hybrid[J]. Can. J. Plant Sci., 2011, 91(1):81-90. 
[20]	Zou G, Yan S, Zhai G, et al. Genetic variability and correlation of stalk yield- related traits and sugar concentration of stalk juice in a Sweet sorghum (Sorghum bicolor L. Moench) population[J]. Aust. J. Crop Sci., 2011, 5(10):1232-1238. 
[21]	Guan Y, Wang H, Qin L, et al. QTL mapping of bio--energy related traits in Sorghum[J]. Euphytica, 2011, 182(3):431-440. 
[22]	Narayanan S, Aiken R M, Prasad P, et al. A simple quantitative model to predict leaf area index in sorghum[J]. Agron. J., 2014, 106(1):219-226. 
[23]	Murray S C, Sharma A, Rooney W L, et al. Genetic improvement of sorghum as a biofuel feedstock: I. QTL for stem sugar and grain nonstructural carbohydrates[J]. Crop Sci., 2008, 48(6):2165-2179. 
[24]	Tian F, Bradbury P J, Brown P J, et al. Genome--wide association study of leaf architecture in the maize nested association mapping population[J]. Nat. Genet., 2011, 43(2):159-162. 
[25]	Morinaka Y, Sakamoto T, Inukai Y, et al. Morphological alteration caused by brassinosteroid insensitivity increases the biomass and grain production of rice[J]. Plant Physiol., 2006, 141(3):924-931. 
[26]	Xin Z, Wang M L. Sorghum as a versatile feedstock for bioenergy production[J]. Biofuels, 2011, 2(5):577-588. 
[27]	Hart G, Schertz K, Peng Y, et al. Genetic mapping of Sorghum bicolor (L.) Moench QTLs that control variation in tillering and other morphological characters[J]. Theor. Appl. Genet., 2001, 103(8):1232-1242. 
[28]	Murray S C, Rooney W L, Mitchell S E, et al. Genetic improvement of sorghum as a biofuel feedstock: II. QTL for stem and leaf structural carbohydrates[J]. Crop Sci., 2008, 48(6):2180-2193. 
[29]	Wang F, Liu C Z. Development of an economic refining strategy of Sweet sorghum in the inner Mongolia region of China[J]. Energy Fuels, 2009, 23(8):4137-4142. 
[30]	Qazi H A, Paranjpe S, Bhargava S. Stem sugar accumulation in Sweet sorghum-activity and expression of sucrose metabolizing enzymes and sucrose transporters[J]. J. Plant Physiol., 2012, 169(6):605-613. 
[31]	Biswal A K, Hao Z, Pattathil S, et al. Downregulation of GAUT12 in Populus deltoides by RNA silencing results in reduced recalcitrance, increased growth and reduced xylan and pectin in a woody biofuel feedstock[J]. Biotechnol. Biofuels, 2015,8(1):1-26. 
[32]	Shiringani A L, Friedt W. QTL for fibre--related traits in grain x Sweet sorghum as a tool for the enhancement of sorghum as a biomass crop[J]. Theor. Appl. Genet., 2011, 123(6):999-1011. 
[33]	H Yu, Cong L, Zhu Z, et al. Identification of differentially expressed microRNA in the stems and leaves during sugar accumulation in sweet sorghum[J]. Gene, 2015, 571(2):221-230. 
[34]	Yamaguchi S. Gibberellin metabolism and its regulation. Annu[J]. Rev. Plant Biol., 2008, 59:225-251. 
[35]	Ordonio R L, Ito Y, Hatakeyama A, et al. Gibberellin deficiency pleiotropically induces culm bending in sorghum: an insight into sorghum semi--dwarfbreeding[J]. Sci. Rep., 2014, 4(4):61 
[36]	Okuno A, Hirano K, Asano K, et al. New approach to increasing rice lodging resistance and biomass yield through the use of high gibberellin producing varieties[J]. PLoS One, 2014, 9(2):e86870. 
[37]	Poovaiah C R, Mazarei M, Decker S R, et al. Transgenic switchgrass (Panicum virgatum L.) biomass is increased by overexpression of switchgrass sucrose synthase (PvSUS1) [J]. Biotechnol. J., 2014, 10(4):552-563. 
[38]	Multani D S, Briggs S P, Chamberlin M A, et al. Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants[J]. Science, 2003, 302(5642):81-84. 
[39]	Klein R R, Rodriguez-Herrera R, Schlueter J A, et al. Rooney. Identification of genomic regions that affect grain--mould incidence and other traits of agronomic importance in sorghum[J]. Theor. Appl. Genet., 2001, 102(2):307-319. 
[40]	Hammer G, Cooper M, Tardieu F, et al. Models for navigating biological complexity in breeding improved crop plants[J]. Trends Plant Sci., 2006, 11(12):587-593. 
[41]	Kariali E, Mohapatra P K. Hormonal regulation of tiller dynamics in differentially--tillering rice cultivars[J]. Plant Growth Regul., 2007, 53(3):215-223. 
[42]	Kong W, Guo H, Goff V H, et al. Genetic analysis of vegetative branching in sorghum[J]. Theor. Appl. Genet., 2014, 127(11):2387-2403. 
[43]	Lin Q, Wang D, Dong H, et al. Rice APC/CTE controls tillering by mediating the degradation of MONOCULM 1[J]. Nat. Commun., 2012, 3(2):752. 
[44]	Zhao H, Huai Z, Xiao Y, et al. Natural variation and genetic analysis of the tiller angle gene MsTAC1 in Miscanthus sinensis[J]. Planta, 2014,240(1):161-75. 
[45]	Zhang B, Wang Q. MicroRNA--based biotechnology for plant improvement[J]. J. Cell. Physiol., 2015,230(1):1-15. 
[46]	Mullet J, Morishige D, McCormick R, et al. Energy Sorghum--a genetic model for the design of C4 grass bioenergy crops[J]. J. Exp. Bot., 2014,65(13):3479-3489. 
[47]	Bendix C, Marshall C M, Harmon F G. Circadian clock genes universally control key agricultural traits[J]. Mol. Plant, 2015, 8(8):1135-1152 
[48]	Kebrom T H, Burson B L, Finlayson S A. Phytochrome B represses Teosinte Branched1 expression and induces sorghum axillary bud outgrowth in response to light signals[J]. Plant Physiol., 2006, 140(3):1109-1117. 
[49]	Murphy R L, Morishige D T, Brady J A, et al. Ghd7 (Ma6) represses sorghum flowering in long days: Ghd7 alleles enhance biomass accumulation and grain production. Plant Gen., 2014, 7(2):10. 
[50]	Wang C Q, Guthrie C, Sarmast M K, et al. BBX19 interacts with CONSTANS to repress FLOWERING LOCUS T transcription, defining a flowering time checkpoint in Arabidopsis[J]. Plant Cell, 2014, 26(9):3589-602. 
[51]	Anami S E, Zhang L M, Xia Y, et al. Sweet sorghum ideotypes: genetic improvement of stress tolerance[J]. Food and Energy Security, 2015, 4(1):3-24. 
[52]	Teingtham K. QTL Mapping of Biomass Related Traits in Sweet Sorghum//. Plant & Animal Genome[C]. San Diego, CA, 2015. 
[53]	Teingtham K. Genotyping by sequencing for identification and mapping of QTLs for bioenergy-related traits in sweet sorghum[D]. Ann Arbor: The University of Nebraska - Lincoln, ProQuest Dissertations Publishing, 2016. 
[54]	Burgos L. Genetic agronomic and compositional characterization of brown midrib sweet sorghum lignocellulosic biomass for ethanol production[D]. Gradworks, 2015. 
[55]	Wang L H, Yang Z W, Zhu L, et al. Cloning and Prokaryotic Expression of Sweet Sorghum Succinic Semialdehyde Dehydrogenase SbSSADH[J]. Biotechnology Bulletin, 2015,31(7):83-90. 
[56]	Bellmer D, Huhnke R, Whiteley R, et al. The untapped potential of Sweet sorghum as a bioenergy feedstock[J]. Biofuels, 2010,1(4):563-573. 
[57]	Vandenbrink, J P, Hilten R N, Das K, et al. Quantitative models of hydrolysis conversion efficiency and biomass crystallinity index for plant breeding[J]. Plant Breeding, 2013, 132:252-258. 
[58]	Wang Y H, Acharya A, Burrell A M, et al. Mapping and candidate genes associated with saccharification yield in sorghum[J]. Genome, 2013, 56(11):659-665. 
[59]	Van Acker R, LepléJ C, Aerts D, et al. Improved saccharification and ethanol yield from field--grown transgenic poplar deficient in cinnamoyl--CoA reductase[J]. Proc. Natl Acad. Sci., 2014, 111(2):845-850. 
[60]	Fu C, Mielenz J R, Xiao X, et al. Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass[J]. Proc. Natl Acad. Sci., 2011,108(9):3803-3808. 
[61]	Petti C, Harman-Ware A E, Tateno M, et al. Sorghum mutant RG displays antithetic leaf shoot lignin accumulation resulting in improved stem saccharification properties[J]. Biotechnol. Biofuels, 2013,6:1-16. 
[62]	Vermerris W, Saballos A, Ejeta G, et al. Molecular breeding to enhance ethanol production from corn and sorghum stover[J]. Crop Sci., 2007,47(3):S142-153. 
[63]	Mace E, Jordan D. Location of major effect genes in sorghum (Sorghum bicolor (L.) Moench) [J]. Theor. Appl. Genet., 2010, 121(7):1339-1356. 
[64]	Li Z, Zhao C, Zha Y, et al. The minor wall--networks between monolignols and interlinked--phenolics predominantly affect biomass enzymatic digestibility in Miscanthus[J]. PLoS One, 2014b, 9(8):e105115. 
[65]	Sahoo D K, Maiti I B. Biomass derived from transgenic tobacco expressing the Arabidopsis CESA3 ixr1-2 gene exhibits improved saccharification[J]. Acta Biol. Hung., 2014, 65(2):189-204.
  |