Chinese Agricultural Science Bulletin ›› 2020, Vol. 36 ›› Issue (24): 85-90.doi: 10.11924/j.issn.1000-6850.casb20200200090
Special Issue: 生物技术
Previous Articles Next Articles
Geng Gui1,2(), Li Renren1, Lv Chunhua1, Yu Lihua2, Wang Yuguang2()
Received:
2020-02-07
Revised:
2020-03-09
Online:
2020-08-25
Published:
2020-08-20
Contact:
Wang Yuguang
E-mail:genggui01@163.com;wangyuguang0920@hotmail.com
CLC Number:
Geng Gui, Li Renren, Lv Chunhua, Yu Lihua, Wang Yuguang. Exogenous Regulator Substances Regulate Plant Growth Under Salt Stress: A Review[J]. Chinese Agricultural Science Bulletin, 2020, 36(24): 85-90.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb20200200090
[1] |
Abbasi H, Jamil M, Haq A, et al. Salt stress manifestation on plants, mechanism of salt tolerance and potassium role in alleviating it: A review[J]. Zemdirbyste-Agriculture, 2016,103:229-238.
doi: 10.13080/z-a.2016.103.030 URL |
[2] | 尹相博, 李青, 王绍武. 外源物质缓解盐胁迫下植物幼苗生长的研究进展[J]. 黑龙江农业科, 2013(11):147-150. |
[3] |
Durner J, Klessig D F. Nitric oxide as a signal in plants[J]. Current opinion in plant biology, 1999,2(5):369-374.
doi: 10.1016/s1369-5266(99)00007-2 URL pmid: 10508751 |
[4] | 李顺, 景举伟, 严金平, 等. 气体信号分子H2S在植物中的研究进展[J]. 植物生理学报, 2015,51(5):579-585. |
[5] | 颜志明, 孙锦, 郭世荣, 等. 外源脯氨酸对盐胁迫下甜瓜幼苗根系抗坏血酸-谷胱甘肽循环的影响[J]. 植物科学学报, 2014,32(05):502-508. |
[6] | 马婷燕, 李彦忠. 外源甜菜碱对NaCl胁迫下紫花苜蓿种子萌发及幼苗抗性的影响[J]. 草业科学, 2019,36(12):3100-3110. |
[7] | 段娜, 贾玉奎, 徐军, 等. 植物内源激素研究进展[J]. 中国农学通报, 2015,31(2):159-165. |
[8] | 张丽, 罗孝明, 蒙辉, 等. 盐胁迫下植物激素水平的研究进展[J]. 蔬菜, 2017(3):29-32. |
[9] |
Wolters H, Jürgens G. Survival of the flexible: hormonal growth control and adaptation in plant development[J]. Nature Reviews Genetics, 2009,10(5):305-317.
doi: 10.1038/nrg2558 URL pmid: 19360022 |
[10] |
Wang Y, Li K, Li X. Auxin redistribution modulates plastic development of root system architecture under salt stress in Arabidopsis thaliana[J]. Journal of Plant Physiology, 2009,166(15):1637-1645.
doi: 10.1016/j.jplph.2009.04.009 URL pmid: 19457582 |
[11] |
Burssens S, Himanen K, Cotte B V D, et al. Expression of cell cycle regulatory genes and morphological alterations in response to salt stress in Arabidopsis thaliana[J]. Planta, 2000,211(5):632-640.
doi: 10.1007/s004250000334 URL |
[12] |
West G. Cell cycle modulation in the response of the primary root of Arabidopsis to salt stress[J]. Plant physiology, 2004,135(2):1050-1058.
doi: 10.1104/pp.104.040022 URL pmid: 15181207 |
[13] |
Sun F, Zhang W, Hu H, et al. Salt modulates gravity signaling pathway to regulate growth direction of primary roots in Arabidopsis[J]. Plant Physiology, 2008,146(1):178-188.
doi: 10.1104/pp.107.109413 URL pmid: 18024552 |
[14] |
Albino M, Giancarlo B, Giampaolo R, et al. Contrasting effects of GA 3 treatments on tomato plants exposed to increasing salinity[J]. Journal of Plant Growth Regulation, 2010,29(1):63-72.
doi: 10.1007/s00344-009-9114-7 URL |
[15] |
Achard P, Cheng H, Grauwe L D, et al. Integration of plant Responses to environmentally activated phytohormonal signals[J]. Science, 2006,311(5757):91-94.
doi: 10.1126/science.1118642 URL pmid: 16400150 |
[16] | 申国柱, 刘湘永, 申仕康, 等. 6-BA和NAA对茶梨种子发芽特性的影响[J]. 种子, 2008(03):73-74. |
[17] | 廖祥儒, 贺普超, 朱新产. 玉米素对盐渍下葡萄叶圆片H2O2清除系统的影响[J]. Acta Botanica Sinica, 1997(07):641-646. |
[18] |
Yu J, Huang J, Wang Z, et al. An Na+/H + antiporter gene from wheat plays an important role in stress tolerance[J]. Journal of Biosciences, 2007,32(2):1153-1161.
doi: 10.1007/s12038-007-0117-x URL |
[19] |
Zhao Q, Zhao Y, Zhao B, et al. Cloning and functional analysis of wheat V-H+-ATPase subunit genes[J]. Plant Molecular Biology, 2009,69(1-2):33-46.
doi: 10.1007/s11103-008-9403-8 URL |
[20] |
Fukuda A, Tanaka Y. Effects of ABA, auxin, and gibberellin on the expression of genes for vacuolar H+-inorganic pyrophosphatase, H +-ATPase subunit A, and Na +/H + antiporter in barley[J]. Plant Physiology and Biochemistry, 2006,44(5-6):351-358.
doi: 10.1016/j.plaphy.2006.06.012 URL pmid: 16806958 |
[21] |
Agarwal S, Sairam R K, Srivastava G C, et al. Role of ABA, salicylic acid, calcium and hydrogen peroxide on antioxidant enzymes induction in wheat seedlings[J]. Plant Science, 2005,169(3):559-570.
doi: 10.1016/j.plantsci.2005.05.004 URL |
[22] |
Juan F, Jiménez B, Oscar A, et al. Modulation of spermidine and spermine levels in maize seedlings subjected to long-term salt stress[J]. Plant Physiology and Biochemistry, 2007,45(10-11):812-821.
doi: 10.1016/j.plaphy.2007.08.001 URL pmid: 17890098 |
[23] |
Ajmal K, Raziuddin A, Bilquees G, et al. Dormancy and germination responses of halophyte seeds to the application of ethylene[J]. Comptes Rendus Biologies, 2009,332(9):806-815.
doi: 10.1016/j.crvi.2009.05.002 URL pmid: 19748455 |
[24] |
Hwang O J, Back K. Melatonin deficiency confers tolerance to multiple abiotic stresses in rice via decreased brassinosteroid levels[J]. International journal of molecular sciences, 2019,20(20):5173.
doi: 10.3390/ijms20205173 URL |
[25] |
Wei W, Li Q T, Chu Y N, et al. Melatonin enhances plant growth and abiotic stress tolerance in soybean plants.[J]. Journal of Experimental Botany, 2015,66(3):695-707.
doi: 10.1093/jxb/eru392 URL pmid: 25297548 |
[26] |
Manchester L C, Coto Montes A, Boga J A, et al. Melatonin: an ancient molecule that makes oxygen metabolically tolerable[J]. Journal of Pineal Research, 2015,59(4):403-419.
doi: 10.1111/jpi.12267 URL pmid: 26272235 |
[27] | 王明瑶, 曹亮, 于奇, 等. 褪黑素浸种对盐碱胁迫下大豆种子萌发的影响[J]. 作物杂志, 2019,6:195-202. |
[28] |
陈莉, 刘连涛, 马彤彤, 等. 褪黑素对盐胁迫下棉花种子抗氧化酶活性及萌发的影响[J]. 棉花学报, 2019,31(5):438-447.
doi: 10.11963/1002-7807.cllcd.20190905 URL |
[29] | 彭玲, 李爱, 杨漫, 等. 外施褪黑素对盐胁迫下红花生长和生理特性的影响[J]. 中药材, 2019,42(8):1730-1737. |
[30] | 范海霞, 郭若旭, 辛国奇, 等. 外源褪黑素对盐胁迫下芦苇幼苗生长和生理特性的影响[J]. 中国农业科技导报, 2019,21(11):51-58. |
[31] |
Zacharoula K, Therios L, Efstathios R, et al. Melatonin combined with ascorbic acid provides salt adaptation in Citrus aurantium L. seedlings[J]. Plant Physiology and Biochemistry, 2015,86:155-165.
doi: 10.1016/j.plaphy.2014.11.021 URL pmid: 25500452 |
[32] | 尹赜鹏, 王珍琪, 齐明芳, 等. 外施褪黑素对盐胁迫下番茄幼苗光合功能的影响[J]. 生态学杂志, 2019,38(02):467-475. |
[33] |
Tan X, Long W, Zeng L, et al. Melatonin-induced transcriptome variation of rapeseed seedlings under Salt Stress[J]. International journal of molecular sciences, 2019,20(21):5355.
doi: 10.3390/ijms20215355 URL |
[34] |
Choi G H, Back K. Suppression of melatonin 2-hydroxylase increases melatonin production leading to the enhanced abiotic stress tolerance against Cadmium, Senescence, Salt, and Tunicamycin in Rice Plants[J]. Biomolecules, 2019,9(10):589.
doi: 10.3390/biom9100589 URL |
[35] | 彭浩, 宋文路, 王晓强, 等. 水杨酸与植物抗逆性关系研究进展[J]. 园艺与种苗, 2016(02):74-78. |
[36] | 廖姝, 倪祥银, 齐泽民, 等. 水杨酸对NaCl胁迫下大豆种子萌发和幼苗逆境生理的影响[J]. 内江师范学院学报, 2013,28(02):39-42. |
[37] |
Mimouni H, Wasti S, Manaa A, et al. Does Salicylic Acid (SA) improve tolerance to salt stress in plants? a study of SA effects on tomato plant growth, water dynamics, photosynjournal, and biochemical parameters[J]. OMICS: A Journal of Integrative Biology, 2016,20(3):180-190.
doi: 10.1089/omi.2015.0161 URL pmid: 26909467 |
[38] |
Li T, Hu Y, Du X, et al. Salicylic acid alleviates the adverse effects of salt stress in Torreya grandis cv. Merrillii seedlings by activating photosynjournal and enhancing antioxidant systems[J]. PLoS One, 2014,9(10):e109492.
doi: 10.1371/journal.pone.0109492 URL pmid: 25302987 |
[39] |
Garg N, Bharti A. Salicylic acid improves arbuscular mycorrhizal symbiosis, and chickpea growth and yield by modulating carbohydrate metabolism under salt stress[J]. Mycorrhiza, 2018,28(8):727-746.
doi: 10.1007/s00572-018-0856-6 URL pmid: 30043257 |
[40] |
Zheng J, Ma X, Zhang X, et al. Salicylic acid promotes plant growth and salt-related gene expression in Dianthus superbus L. (Caryophyllaceae) grown under different salt stress conditions[J]. Physiology and Molecular Biology of Plants, 2018,24(2):231-238.
doi: 10.1007/s12298-017-0496-x URL pmid: 29515317 |
[41] |
Ma X, Zheng J, Zhang X, et al. Salicylic acid alleviates the adverse effects of salt stress on Dianthus superbus (Caryophyllaceae) by activating photosynjournal, protecting morphological structure, and enhancing the antioxidant system[J]. Frontiers in Plant Science, 2017,8:600.
doi: 10.3389/fpls.2017.00600 URL pmid: 28484476 |
[42] | 孙德智, 韩晓日, 彭靖, 等. 外源NO和SA对盐胁迫下番茄幼苗叶片膜脂过氧化及AsA-GSH循环的影响[J]. 植物科学学报, 2018,36(4):612-622. |
[43] |
Hussain S S, Ali M, Ahmad M, et al. Polyamines: Natural and engineered abiotic and biotic stress tolerance in plants[J]. Biotechnology Advances, 2011,29(3):300-311.
doi: 10.1016/j.biotechadv.2011.01.003 URL |
[44] | Zhang Y, Wu R, Qin G, et al. Overexpression of WOX1 leads to defects in meristem development and polyamine homeostasis in Arabidopsis[J]. Journal of Integrative Plant Biology, 2011,6:87-100. |
[45] |
Tavladoraki P, Cona A, Federico R, et al. Polyamine catabolism: Target for antiproliferative therapies in animals and stress tolerance strategies in plants[J]. Amino Acids, 2012,42:411-426
doi: 10.1007/s00726-011-1012-1 URL |
[46] |
Rubén A, Marta. Polyamine metabolic canalization in response to drought stress in Arabidopsis and the resurrection plant Craterostigma plantagineum[J]. Plant Signaling & Behavior, 2011,6:243-250.
doi: 10.4161/psb.6.2.14317 URL pmid: 21330782 |
[47] | 束胜. 外源腐胺缓解黄瓜幼苗盐胁迫伤害的光合作用机理[D]. 南京:南京农业大学, 2012. |
[48] | 张毅. 亚精胺对番茄幼苗盐碱胁迫的缓解效应及其调控机理[D]. 杨凌:西北农林科技大学, 2013. |
[49] |
Zhao F, Song C, He J, et al. Polyamines improve K+/Na+ homeostasis in barley seedlings by regulating root ion channel activities[J]. Plant physiology. 2007,145:1061-1072.
doi: 10.1104/pp.107.105882 URL pmid: 17905858 |
[50] |
孟德云, 侯林琳, 杨莎, 等. 外源多胺对盆栽花生盐胁迫的缓解作用[J]. 植物生态学报, 2015,39(12):1209-1215.
doi: 10.17521/cjpe.2015.0117 URL |
[51] | 范玉琴. 植物中油菜素类固醇信号转导与细胞增殖[J]. 亚热带植物科学, 2007,3:80-84. |
[52] |
Krishna P, Prasad B D, Rahman T. Brassinosteroid action in plant abiotic stress tolerance[J]. Methods Mol Biol., 2017,1564:193-202.
doi: 10.1007/978-1-4939-6813-8_16 URL pmid: 28124256 |
[53] | Anjum S, Wang L, Farooq M, et al. Brassinolide application improves the drought tolerance in maize through modulation of enzymatic antioxidants and leaf gas exchange[J]. Journal of Agronomy and Crop ence, 2011,197(3):177-185 |
[54] |
Liu J, Gao H, Wang X, et al. Effects of 24-epibrassinolide on plant growth osmotic regulation and ion homeostasis of salt-stressed canola[J]. Plant Biology, 2014,16(2):440-450.
doi: 10.1111/plb.12052 URL |
[55] | Ling Y, Sheng S, Jin S, et al. Effects of 24-epibrassinolide on the photosynthetic characteristics antioxidant system and chloroplast ultrastructure in Cucumis sativus L. under Ca(NO3)2 stress[J]. Photosynjournal Research, 2012,112(3):205-214. |
[56] |
Catterou F, Dubois H, Schaller L, et al. Brassinosteroids, microtubules and cell elongation in Arabidopsis thaliana. I. Molecular, cellular and physiological characterization of the Arabidopsis bull mutant, defective in the delta 7-sterol-C5-desaturation step leading to brassinosteroid biosynjournal[J]. Planta, 2001,212(5-6):659-672.
doi: 10.1007/s004250000466 URL |
[57] |
Ashraf N, Akram R, Arteca M, et al. The physiological, biochemical and molecular roles of brassinosteroids and salicylic acid in plant processes and salt tolerance[J]. Critical Reviews in Plant Sciences, 2010,29(3):162-190.
doi: 10.1080/07352689.2010.483580 URL |
[58] | 刘丹. 外源BR对盐碱胁迫下甜菜生理特性及产量和品质的影响[D]. 哈儿滨:东北农业大学, 2019. |
[59] |
Efimova M V, Khripach V A, Boyko E V. The priming of potato plants induced by brassinosteroids reduces oxidative stress and increases salt tolerance[J]. Doklady Biological Sciences, 2018,478(1):33-36.
doi: 10.1134/S0012496618010106 URL pmid: 29536405 |
[60] |
Wu W, Zhang Q, Ervin E H, et al. Physiological mechanism of enhancing salt stress tolerance of perennial ryegrass by 24-Epibrassinolide[J]. Frontiers in Plant Science, 2017,8:1017.
doi: 10.3389/fpls.2017.01017 URL pmid: 28674542 |
[61] |
Huang H, Liu B, Liu L, et al. Jasmonate action in plant growth and development[J]. Journal of Experimental Botany, 2017,68(6):1349-1359.
doi: 10.1093/jxb/erw495 URL pmid: 28158849 |
[62] | 蔡昆争, 董桃杏, 徐涛. 茉莉酸类物质(JAs)的生理特性及其在逆境胁迫中的抗性作用[J]. 生态环境, 2006(2):397-404. |
[63] | 李小玲, 华智锐. 外源茉莉酸甲酯对盐胁迫下黄芩种子萌发及幼苗生理特性的影响[J]. 山西农业科学, 2016,44(11):1603-1607. |
[64] | 周晓馥, 王艺璇. 外源茉莉酸对盐胁迫下玉米光合特性的影响[J]. 吉林师范大学学报, 2019,40(4):80-86. |
[65] | 严加坤, 严荣, 汪亚妮. 外源茉莉酸甲酯对盐胁迫下玉米根系吸水的影响[J]. 广东农业科学, 2019,46(1):1-6. |
[66] |
Zhu Y, Gong H. Beneficial effects of silicon on salt and drought tolerance in plants[J]. Agronomy for Sustainable Development, 2013,34(2):455-472.
doi: 10.1007/s13593-013-0194-1 URL |
[67] |
Etesami H, Jeong B R. Silicon (Si): Review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants[J]. Ecotoxicology and Environmental Safety, 2017,147:881-896.
doi: 10.1016/j.ecoenv.2017.09.063 URL pmid: 28968941 |
[68] |
Alzahrani Y, Ku A, Alharby H F, et al. The defensive role of silicon in wheat against stress conditions induced by drought, salinity or cadmium[J]. Ecotoxicology and Environmental Safety, 2018,154:187-196.
doi: 10.1016/j.ecoenv.2018.02.057 URL pmid: 29475124 |
[69] |
Lotfi R, Ghassemi Golezani K. Influence of salicylic acid and silicon on seed development and quality of mung bean under salt stress[J]. Seed Science and Technology, 2015,43(110):52-61.
doi: 10.15258/sst URL |
[70] |
Shiwen W, Peng L, Daoqian C, et al. Silicon enhanced salt tolerance by improving the root water uptake and decreasing the ion toxicity in cucumber[J]. Frontiers in Plant Science, 2015,6:759.
doi: 10.3389/fpls.2015.00759 URL pmid: 26442072 |
[71] |
Yin L, Wang S, Li J, et al. Application of silicon improves salt tolerance through ameliorating osmotic and ionic stresses in the seedling of Sorghum bicolor[J]. Acta Physiologiae Plantarum, 2013,35(11):3099-3107.
doi: 10.1007/s11738-013-1343-5 URL |
[72] | 任珺, 孙梦洁, 张照桤, 等. 外源钙对盐胁迫下苦豆子(Sophora alopecuroides)种子萌发和幼苗生长的影响[J]. 中国沙漠, 2019,39(01):105-109. |
[73] | 李文杨. 外源钙对盐胁迫下白菜种子萌发的影响[J]. 南方园艺, 2018,29(01):9-12. |
[74] | 黄璐瑶, 李壮壮, 段童瑶, 等. 盐胁迫下外源钙对忍冬光合系统的调控[J]. 中国中药杂志, 2019,44(8):1531-1536. |
[75] | 杨莎, 侯林琳, 郭峰, 等. 盐胁迫下外源Ca2+对花生生长发育、生理及产量的影响[J]. 应用生态学报, 2017,28(3):894-900. |
[76] | 王文银, 高小刚, 司晓林, 等. 外源钙盐对盐胁迫下沙拐枣渗透调节和膜脂过氧化的影响[J]. 环境科学研究, 2017,30(8):1230-1237. |
[1] | LIU Qingsong, JIA Yanli, XIAO Yu, GUO Zhiding, JI Mingmei, ZHAO Zhongxiang, HUANG Sufang, YUE Mingqiang, LIU Zhen, YAN Xudong, XU Yupeng. Effects of Salt Stress on Physiological and Growth Traits of Alfalfa [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 96-101. |
[2] | ZHANG Yuyang, ZHOU Xue, LIU Lingyi, XU Wujun, REN Xuqin, WANG Guanglong, XIONG Aisheng. Garlic Chitinase Gene AsCHI1: Identification and Its Response to Salt Stress [J]. Chinese Agricultural Science Bulletin, 2022, 38(5): 23-29. |
[3] | LI Sen, FENG Di, ZHANG Jingmin, ZHU Haiyan, PENG Dianliang, WANG Zhihe, WANG Qinqin. Effects of Fulvic Acid Potassium on Germination and Seedling Growth of Cherry Radish Under NaCl Solution Hydroponics [J]. Chinese Agricultural Science Bulletin, 2022, 38(5): 48-53. |
[4] | ZHAI Caijiao, ZHANG Jiao, CUI Shiyou, CHEN Pengjun. Effects of Salt Stress on the Panicle Traits and Yield Components of Rice Cultivars [J]. Chinese Agricultural Science Bulletin, 2022, 38(4): 1-9. |
[5] | YI Jiawen, FENG Di, ZHU Wei, QI Na, TENG Fengkui, LU Xiaoyin. Salt Tolerance of Rice Varieties at Germination Stage: A Comparative Study [J]. Chinese Agricultural Science Bulletin, 2022, 38(33): 10-14. |
[6] | WANG Yang, ZHANG Rui, ZHOU Yuqing, LIU Yonghao, SHAHID Hussain, LIU Gaosheng, DAI Qigen. Analysis of Research Situation of Rice Salt Tolerance in China Based on Bibliometrics [J]. Chinese Agricultural Science Bulletin, 2022, 38(31): 147-153. |
[7] | GUO Dongsen, WANG Lin, WEI Qishun, CUI Lianming, ZHOU Ying, GUO Chengbao. Physiological Regulation Effect of Feather Biodegradation Liquid on Chinese Cabbage Growth in Response to Salt Stress [J]. Chinese Agricultural Science Bulletin, 2022, 38(25): 25-29. |
[8] | HUANG Pingsheng, LIU Shinan, LI Ting, QIN Yonghua. Effects of Exogenous Silicon on Photosynthesis and Chlorophyll Fluorescence Characteristics and Antioxidant Enzymes of Cryptocarya concinna Seedlings Under Salt Stress [J]. Chinese Agricultural Science Bulletin, 2022, 38(23): 32-38. |
[9] | XING Qiming, JIN Wenjie, ZHOU Libin, LI Wenjian, LIU Ruiyuan, MA Jianzhong. Salt Tolerance of Plant Increased by Plant Growth Promoting Rhizobacteria: Research Progress [J]. Chinese Agricultural Science Bulletin, 2022, 38(11): 46-52. |
[10] | Li Wan, He Ning, Xiang Hongtao, Liu Miao, Wang Manli, Li Bo, Wang Xueyang. Exogenous Hormone in Flowering Period of Adzuki Bean: Effects on Agronomic and Yield Characters [J]. Chinese Agricultural Science Bulletin, 2021, 37(8): 8-13. |
[11] | Wang Mingquan, Fu Lixin, Li Guoliang, Hu Guanghui, Ren Honglei, Hu Shaoxin, Yang Jianfei, Liu Chang, Gong Shichen. The Photosynthesis Mechanism of Tolerant and Sensitive Maize Germplasm Resources Under Salt Tolerance at Seedling Stage [J]. Chinese Agricultural Science Bulletin, 2021, 37(5): 8-14. |
[12] | Ma Huimin, Sun Peilin, Ma Chunquan. Salt Tolerance Function of Transcription Factor BvM14-GAI [J]. Chinese Agricultural Science Bulletin, 2021, 37(34): 34-42. |
[13] | Wang Shuang, Li Haiying. PUB Gene in Sugar Beet Response to Salt Stress: Bioinformatics Analysis [J]. Chinese Agricultural Science Bulletin, 2021, 37(33): 120-127. |
[14] | Jia Lin, Liu Luyao, Wang Pengshan, Li Zhiming, Zhang Jinlong, Li Xinzheng, Tian Xiaoming, Wang Guoqiang. Salt-tolerance and Soil Improvement Mechanism of Suaeda salsa: Research Progress [J]. Chinese Agricultural Science Bulletin, 2021, 37(3): 73-80. |
[15] | Hao Xiaocong, Wang Weiwei, Zhang Fengting, Sun Rui, Fang Zhaofeng, Liu Shan, Cao Zhishen, Zhu Wengen, Zhao Changping, Wang Dezhou, Tang Yimiao. TaHPPR Gene in Wheat: Cloning and Expression Analysis [J]. Chinese Agricultural Science Bulletin, 2021, 37(3): 129-138. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||