Chinese Agricultural Science Bulletin ›› 2020, Vol. 36 ›› Issue (30): 75-81.doi: 10.11924/j.issn.1000-6850.casb2020-002
Special Issue: 生物技术
Previous Articles Next Articles
Zhang Jialin1,2(), Li Haiying1,2(
)
Received:
2020-04-12
Revised:
2020-06-23
Online:
2020-10-25
Published:
2020-10-16
Contact:
Li Haiying
E-mail:zx8262889@163.com;lvzh3000@sina.com
CLC Number:
Zhang Jialin, Li Haiying. Ubiquitin Modification and Its Research Progress in Plant Proteomics[J]. Chinese Agricultural Science Bulletin, 2020, 36(30): 75-81.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2020-002
植物材料 | 组织 | 处理条件 | 富集方法 | 结果 | 参考 文献 | |||
---|---|---|---|---|---|---|---|---|
拟南芥 (Arabidopsis thaliana L.) | 7日龄的黄化拟南芥幼苗 | 红光照射 | GST-UBA亲和介质法泛素偶联His标签法 | 照射前130种泛素化蛋白照射后302种泛素化蛋白 | [ | |||
玉米(Zea mays L.) | 7日龄玉米 黄化幼苗 | 光照射 | K-ε-GG抗体法 | 1053种泛素化蛋白 1926个泛素化位点 78个差异表达泛素化位点 | [ | |||
矮牵牛 (Petunia hybrida Mitchell) | 花冠 | 乙烯处理 | K-ε-GG抗体法 | 284个下调蛋白 233个上调蛋白 | [ | |||
非洲水稻 (Oryza glaberrima) | 12日龄的 非洲水稻幼苗 | 45℃ 高温处理 | K-ε-GG抗体法 | 264个上调肽段 147个下调肽段 | [ | |||
马铃薯四倍体栽培品种 (Solanum tuberosum L.) | 块茎培育的 组培苗 | 聚乙二醇 处理模拟 干旱胁迫 | K-ε-GG抗体法 | 3个下调位点 22个上调位点 | [ | |||
茶 (Camellia sinensis L.) | 两年龄的茶 | 干旱处理 | K-ε-GG抗体法 | 14个上调位点 123个下调位点 | [ | |||
水稻(Oryza sativa L.) | 7日龄 水稻幼苗 | 几丁质处理 | K-ε-GG抗体法 | 144个位点上调 167个位点下调 | [ | |||
flg22处理 | K-ε-GG抗体法 | 151个为位点上调 179个位点下调 |
植物材料 | 组织 | 处理条件 | 富集方法 | 结果 | 参考 文献 | |||
---|---|---|---|---|---|---|---|---|
拟南芥 (Arabidopsis thaliana L.) | 7日龄的黄化拟南芥幼苗 | 红光照射 | GST-UBA亲和介质法泛素偶联His标签法 | 照射前130种泛素化蛋白照射后302种泛素化蛋白 | [ | |||
玉米(Zea mays L.) | 7日龄玉米 黄化幼苗 | 光照射 | K-ε-GG抗体法 | 1053种泛素化蛋白 1926个泛素化位点 78个差异表达泛素化位点 | [ | |||
矮牵牛 (Petunia hybrida Mitchell) | 花冠 | 乙烯处理 | K-ε-GG抗体法 | 284个下调蛋白 233个上调蛋白 | [ | |||
非洲水稻 (Oryza glaberrima) | 12日龄的 非洲水稻幼苗 | 45℃ 高温处理 | K-ε-GG抗体法 | 264个上调肽段 147个下调肽段 | [ | |||
马铃薯四倍体栽培品种 (Solanum tuberosum L.) | 块茎培育的 组培苗 | 聚乙二醇 处理模拟 干旱胁迫 | K-ε-GG抗体法 | 3个下调位点 22个上调位点 | [ | |||
茶 (Camellia sinensis L.) | 两年龄的茶 | 干旱处理 | K-ε-GG抗体法 | 14个上调位点 123个下调位点 | [ | |||
水稻(Oryza sativa L.) | 7日龄 水稻幼苗 | 几丁质处理 | K-ε-GG抗体法 | 144个位点上调 167个位点下调 | [ | |||
flg22处理 | K-ε-GG抗体法 | 151个为位点上调 179个位点下调 |
[1] |
van Huizen M, Kikkert M. The Role of Atypical Ubiquitin Chains in the Regulation of the Antiviral Innate Immune Response[J]. Front Cell Dev Biol, 2019,7:392.
doi: 10.3389/fcell.2019.00392 URL pmid: 32039206 |
[2] |
Elia A E, Boardman A P, Wang D C, et al. Quantitative Proteomic Atlas of Ubiquitination and Acetylation in the DNA Damage Response[J]. Mol Cell, 2015,59(5):867-81.
doi: 10.1016/j.molcel.2015.05.006 URL pmid: 26051181 |
[3] |
Yau R G, Doerner K, Castellanos E R, et al. Assembly and Function of Heterotypic Ubiquitin Chains in Cell-Cycle and Protein Quality Control[J]. Cell, 2017,171(4):918-933.e20.
doi: 10.1016/j.cell.2017.09.040 URL pmid: 29033132 |
[4] |
Heger K, Wickliffe K E, Ndoja A, et al. OTULIN limits cell death and inflammation by deubiquitinating LUBAC[J]. Nature, 2018,559(7712):120-124.
URL pmid: 29950720 |
[5] |
Lu Y, Lee B H, King R W, et al. Substrate degradation by the proteasome: a single-molecule kinetic analysis[J]. Science, 2015,348(6231):1250834.
URL pmid: 25859050 |
[6] |
Stone S L. Role of the Ubiquitin Proteasome System in Plant Response to Abiotic Stress[J]. Int Rev Cell Mol Biol, 2019,343:65-110.
doi: 10.1016/bs.ircmb.2018.05.012 URL pmid: 30712675 |
[7] |
Dittmar G, Winklhofer K F. Linear Ubiquitin Chains: Cellular Functions and Strategies for Detection and Quantification[J]. Front Chem, 2019,7:915.
doi: 10.3389/fchem.2019.00915 URL pmid: 31998699 |
[8] |
McClellan A J, Laugesen S H, Ellgaard L. Cellular functions and molecular mechanisms of non-lysine ubiquitination[J]. Open Biol, 2019,9(9):190147.
doi: 10.1098/rsob.190147 URL pmid: 31530095 |
[9] | 李贞, 赵博. 解密泛素链的亲和工具[J]. 生物化学与生物物理进展, 2019,46(09):845-857. |
[10] | Fennell L M, Rahighi S, Ikeda F. Linear ubiquitin chain-binding domains[J]. FEBS, 2018,285(15):2746-2761. |
[11] |
Fan Q, Wang Q, Cai R, et al. The ubiquitin system: orchestrating cellular signals in non-small-cell lung cancer[J]. Cell Mol Biol Lett, 2020,25:1.
URL pmid: 31988639 |
[12] | 周小露. 马立克氏肿瘤的泛素化组分析及CDK1泛素化的鉴定[D]. 长春:吉林大学, 2019. |
[13] |
Yan N, Doelling J H, Falbel T G, et al. The ubiquitin-specific protease family from Arabidopsis. AtUBP1 and 2 are required for the resistance to the amino acid analog canavanine[J]. Plant physiology, 2000,124(4):1828-1843.
doi: 10.1104/pp.124.4.1828 URL pmid: 11115897 |
[14] |
Moon Y K, Hong J, Cho Y, et al. Structure and expression of OsUBP6, an ubiquitin-specific protease 6 homolog in rice (Oryza sativa L.)[J]. Molecules and cells, 2009,28(5):463-472.
doi: 10.1007/s10059-009-0138-4 URL pmid: 19855938 |
[15] |
Sowa M E, Bennett E J, Gygi S P, et al. Defining the human deubiquitinating enzyme interaction landscape[J]. Cell, 2009,138(2):389-403.
doi: 10.1016/j.cell.2009.04.042 URL pmid: 19615732 |
[16] | 兰秋艳, 高媛, 李衍常, 等. 泛素、泛素链和蛋白质泛素化研究进展[J]. 生物工程学报, 2016,32(01):14-30. |
[17] |
Peng J, Schwartz D, Elias J E, et al. A proteomics approach to understanding protein ubiquitination[J]. Nature biotechnology, 2003,21(8):921-926.
doi: 10.1038/nbt849 URL pmid: 12872131 |
[18] | 李衍常. 泛素链和泛素化底物修饰位点特异性的定量蛋白质组学研究[D]. 北京:中国人民解放军军事医学科学院, 2016. |
[19] |
Zhang Y, Fonslow B R, Shan B, et al. Protein analysis by shotgun/bottom-up proteomics[J]. Chemical reviews, 2013,113(4):2343-2394.
doi: 10.1021/cr3003533 URL pmid: 23438204 |
[20] |
Meierhofer D, Wang X, Huang L, et al. Quantitative analysis of global ubiquitination in HeLa cells by mass spectrometry[J]. Journal of proteome research, 2008,7(10):4566-4576.
doi: 10.1021/pr800468j URL pmid: 18781797 |
[21] |
Ota K, Kito K, Iemura S, et al. A parallel affinity purification method for selective isolation of polyubiquitinated proteins[J]. Proteomics, 2008,8(15):3004-3007.
doi: 10.1002/pmic.200800271 URL pmid: 18615433 |
[22] |
Hjerpe R, Aillet F, Lopitz-Otsoa F, et al. Efficient protection and isolation of ubiquitylated proteins using tandem ubiquitin-binding entities[J]. EMBO reports, 2009,10(11):1250-1258.
doi: 10.1038/embor.2009.192 URL pmid: 19798103 |
[23] |
Shi Y, Chan D W, Jung S Y, et al. A data set of human endogenous protein ubiquitination sites[J]. Molecular & cellular proteomics: MCP, 2011,10(5):M110.002089-M110.002089.
doi: 10.1074/mcp.M110.004994 URL pmid: 21311038 |
[24] |
Emmerich, Cohen C H P. Optimising methods for the preservation, capture and identification of ubiquitin chains and ubiquitylated proteins by immunoblotting[J]. Biochem Biophys Res Commun, 2015,466(1):1-14.
doi: 10.1016/j.bbrc.2015.08.109 URL pmid: 26325464 |
[25] |
Matsumoto M, Hatakeyama S, Oyamada K, et al. Large-scale analysis of the human ubiquitin-related proteome[J]. Proteomics, 2005,5(16):4145-4151.
doi: 10.1002/pmic.200401280 URL pmid: 16196087 |
[26] |
Matsumoto M L, Wickliffe K E, Dong K C, et al. K11-linked polyubiquitination in cell cycle control revealed by a K11 linkage-specific antibody[J]. Molecular cell, 2010,39(3):477-484.
doi: 10.1016/j.molcel.2010.07.001 URL pmid: 20655260 |
[27] |
Newton K, Matsumoto M L, Wertz I E, et al. Ubiquitin chain editing revealed by polyubiquitin linkage-specific antibodies[J]. Cell, 2008,134(4):668-678.
doi: 10.1016/j.cell.2008.07.039 URL pmid: 18724939 |
[28] |
Wang H, Matsuzawa A, Brown S A, et al. Analysis of nondegradative protein ubiquitylation with a monoclonal antibody specific for lysine-63-linked polyubiquitin[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008,105(51):20197-20202.
doi: 10.1073/pnas.0810461105 URL pmid: 19091944 |
[29] |
Xu G, Paige J S, Jaffrey S R. Global analysis of lysine ubiquitination by ubiquitin remnant immunoaffinity profiling[J]. Nature biotechnology, 2010,28(8):868-873.
doi: 10.1038/nbt.1654 URL pmid: 20639865 |
[30] |
Wagner S A, Beli P, Weinert B T, et al. A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles[J]. Molecular & cellular proteomics : MCP, 2011,10(10):M111.013284-M111.013284.
doi: 10.1074/mcp.M110.007138 URL pmid: 21715321 |
[31] |
Udeshi N D, Svinkina T, Mertins P, et al. Refined preparation and use of anti-diglycine remnant (K-ε-GG) antibody enables routine quantification of 10,000s of ubiquitination sites in single proteomics experiments[J]. Molecular & cellular proteomics: MCP, 2013,12(3):825-831.
doi: 10.1074/mcp.O112.027094 URL pmid: 23266961 |
[32] |
Anania V G, Pham V C, Huang X D, et al. Peptide level immunoaffinity enrichment enhances ubiquitination site identification on individual proteins[J]. Molecular & cellular proteomics : MCP, 2014,13(1):145-156.
URL pmid: 24142993 |
[33] |
Maor R, Jones A, Nuhse T S, et al. Multidimensional protein identification technology (MudPIT) analysis of ubiquitinated proteins in plants[J]. Molecular & cellular proteomics: MCP, 2007,6(4):601-610.
URL pmid: 17272265 |
[34] |
Manzano C, Abraham Z, Lopez G, et al. Identification of ubiquitinated proteins in Arabidopsis[J]. Plant molecular biology, 2008,68(1-2):145-158.
doi: 10.1007/s11103-008-9358-9 URL |
[35] |
Igawa T, Fujiwara M, Takahashi H, et al. Isolation and identification of ubiquitin-related proteins from Arabidopsis seedlings[J]. Journal of experimental botany, 2009,60(11):3067-3073.
doi: 10.1093/jxb/erp134 URL pmid: 19429840 |
[36] |
Saracco S A, Hansson M, Scalf M, et al. Tandem affinity purification and mass spectrometric analysis of ubiquitylated proteins in Arabidopsis[J]. The Plant journal : for cell and molecular biology, 2009,59(2):344-358.
doi: 10.1111/tpj.2009.59.issue-2 URL |
[37] |
Kim D Y, Scalf M, Smith L M, et al. Advanced proteomic analyses yield a deep catalog of ubiquitylation targets in Arabidopsis[J]. Plant Cell, 2013,25(5):1523-40.
doi: 10.1105/tpc.112.108613 URL |
[38] |
Xie X, Kang H, Liu W, et al. Comprehensive profiling of the rice ubiquitome reveals the significance of lysine ubiquitination in young leaves[J]. Journal of proteome research, 2015,14(5):2017-2025.
doi: 10.1021/pr5009724 URL pmid: 25751157 |
[39] |
Zhang N, Zhang L, Shi C, et al. Comprehensive profiling of lysine ubiquitome reveals diverse functions of lysine ubiquitination in common wheat[J]. Scientific reports, 2017,7(1):13601-13601.
doi: 10.1038/s41598-017-13992-y URL pmid: 29051560 |
[40] |
Lu J, Xu Y. Fan Y, et al. Proteome and Ubiquitome Changes during Rose Petal Senescence[J]. Int J Mol Sci, 2019,20(24):6108.
doi: 10.3390/ijms20246108 URL |
[41] |
Song Y, Shi X, Zou Y, et al. Proteome-wide identification and functional analysis of ubiquitinated proteins in peach leaves[J]. Sci Rep, 2020,10(1):2447.
doi: 10.1038/s41598-020-59342-3 URL pmid: 32051488 |
[42] |
Aguilar-Hernández V, Kim D Y, Stankey R J, et al. Mass Spectrometric Analyses Reveal a Central Role for Ubiquitylation in Remodeling the Arabidopsis Proteome during Photomorphogenesis[J]. Mol Plant, 2017,10(6):846-865.
URL pmid: 28461270 |
[43] |
Wang Y F, Chao Q, Li Z, et al. Large-scale Identification and Time-course Quantification of Ubiquitylation Events During Maize Seedling De-etiolation[J]. Genomics Proteomics Bioinformatics, 2020.
URL pmid: 32561469 |
[44] |
Guo J, Liu J, Wei Q, et al. Proteomes and Ubiquitylomes Analysis Reveals the Involvement of Ubiquitination in Protein Degradation in Petunias[J]. Plant physiology, 2017,173(1):668-687.
doi: 10.1104/pp.16.00795 URL pmid: 27810942 |
[45] |
Li X M, Chao D, Wu Y, et al. Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice[J]. Nature genetics, 2015,47(7):827-833.
doi: 10.1038/ng.3305 URL pmid: 25985140 |
[46] | 唐勋. 马铃薯泛素化蛋白质组学分析及StPUB27基因功能研究[D]. 兰州:甘肃农业大学, 2018. |
[47] |
Xie H, Wang Y, Ding Y, et al. Global Ubiquitome Profiling Revealed the Roles of Ubiquitinated Proteins in Metabolic Pathways of Tea Leaves in Responding to Drought Stress[J]. Sci Rep, 2019,9(1):4286.
doi: 10.1038/s41598-019-41041-3 URL pmid: 30862833 |
[48] |
Chen X L, Xie X, Wu L, et al. Proteomic Analysis of Ubiquitinated Proteins in Rice (Oryza sativa) After Treatment With Pathogen-Associated Molecular Pattern (PAMP) Elicitors[J]. Front Plant Sci, 2018,9:1064.
doi: 10.3389/fpls.2018.01064 URL pmid: 30083178 |
[1] | MENG Qinglei, ZHANG Yuliang, ZHAO Donghui, JIA Weijuan, HE Yunjiang, CHI Shanshan, CHEN Yunjiao, WANG Xueli. Typing Methods of Bacillus cereus: Research Progress [J]. Chinese Agricultural Science Bulletin, 2022, 38(29): 61-66. |
[2] | ZHANG Jing, LIU Lina, YANG Baoming, WANG Yongfen, HE Ping, XU Shengtao, YIN Kesuo, LI Shu, BAI Tingting, LI Yongping, LI Xundong, ZHENG Sijun. Analysis of Main Phenolic Acids in Green Peel of Different Ecological Banana Varieties Based on UPLC-MS/MS [J]. Chinese Agricultural Science Bulletin, 2022, 38(28): 129-135. |
[3] | ZHU Mingxia, BAI Ting, JIN Yulong, WANG Shanshan, LIU Xiaojiao, ZHANG Yuhong. Analysis of Flavor Substances of Different Highland Barley Varieties [J]. Chinese Agricultural Science Bulletin, 2022, 38(12): 146-152. |
[4] | JIANG Kunming, LI Zhenjie, XIANG Nengjun, LIU Ze, WEI Keyi, ZHAO Yingliang, BI Yubo, LI Xiangzhen, WANG Tao, ZOU Congming, LIU Zhihua. Comparative Analysis of Aroma Components of Huize and Shizong Air-cured Tobacco Leaves by HS-SPME-GC/MS Based on Sensory Differences [J]. Chinese Agricultural Science Bulletin, 2022, 38(10): 126-133. |
[5] | Liang Yanqiong, Li Rui, Wu Weihuai, Tan Shibei, Xi Jingen, Zheng Jinlong, Lu Ying, He Chunping, Yi Kexian. Volatile Organic Compounds from Bacillus subtilis Czk1: Optimization of Extraction Conditions Based on HS-SPME-GC-MS [J]. Chinese Agricultural Science Bulletin, 2021, 37(11): 24-31. |
[6] | Ma Weihua, Li Lixin, Shen Jinshan, Wu Wenqing, Song Huailei, Zhang Xufeng, Li Jie. Effects of Different Extraction Fibers on Volatile Compounds of Pyrus bretschneideri Flowers [J]. Chinese Agricultural Science Bulletin, 2020, 36(4): 147-150. |
[7] | Zhou Qin, Wu Yumei. Glyphosate and Aminomethyl Phosphonic Acid in Soil: Determined by Direct Injection Liquid Chromatography-tandem Mass Spectrometry [J]. Chinese Agricultural Science Bulletin, 2020, 36(27): 72-80. |
[8] | Wu Yingxiang, Ye Zhengmei, Wang Wenting, Zong Weixun, Guo Bingchun, Li Yongyu. Volatiles in Leaves of Melaleuca bracteata: Headspace Solid-Phase Microextraction and Gas Chromatography-Mass Spectrometry [J]. Chinese Agricultural Science Bulletin, 2020, 36(2): 53-63. |
[9] | . Determination of betaine in red Sugarbeet by hydrophilic interaction liquid chromatography-tandem mass spectrometryZhou Qin<sup>1,2,3,4</sup>, Wu Yumei<sup>1,2,3,4</sup> [J]. Chinese Agricultural Science Bulletin, 2019, 35(7): 134-138. |
[10] | . Residue Detection and Safety Evaluation of Malathion in Cabbage Mustard and Flowering Chinese Cabbage [J]. Chinese Agricultural Science Bulletin, 2019, 35(34): 139-143. |
[11] | . Determination of Pesticide residues in Sugarbeet by ultra High Perfoemance Liquid Chromatography tandem mass spectrometry [J]. Chinese Agricultural Science Bulletin, 2017, 33(36): 152-156. |
[12] | Che Yuhong,Wu Jinrong,Guo Chunmiao and Yang Bo. Study on Aromatic Components of Four Kinds Quince Fruits by SPME-GC-MS [J]. Chinese Agricultural Science Bulletin, 2017, 33(19): 158-164. |
[13] | Wang Xiaoyu,Du Renpeng,Wang Yao and Zhao Dan. Application of Metabolomics Technology in Food Certification and Characteristic Identification [J]. Chinese Agricultural Science Bulletin, 2016, 32(32): 61-65. |
[14] |
Zhou Xiuteng,Kang Liping,Li Pengying,Yang Guang,Wang Xue and Chen Meilan.
Determination of Abscisic Acid in Arbuscular Mycorrhizal Fungi infectedSalvia |
[15] | . Detection and Analysis of Fungichromin from Bacillus Strains [J]. Chinese Agricultural Science Bulletin, 2016, 32(12): 98-102. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||