Chinese Agricultural Science Bulletin ›› 2022, Vol. 38 ›› Issue (12): 88-94.doi: 10.11924/j.issn.1000-6850.casb2021-0630
Special Issue: 生物技术
Previous Articles Next Articles
ZHANG Zuoda1(), WU Ruona1, WANG Qinfei1, NIU Xiaolei2, ZHANG Zhenwen1(
)
Received:
2021-06-28
Revised:
2021-09-13
Online:
2022-04-25
Published:
2022-05-18
Contact:
ZHANG Zhenwen
E-mail:1742711081@qq.com;scuta96@catas.cn
CLC Number:
ZHANG Zuoda, WU Ruona, WANG Qinfei, NIU Xiaolei, ZHANG Zhenwen. Bioactive Peptides Based on Plants: A Review[J]. Chinese Agricultural Science Bulletin, 2022, 38(12): 88-94.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2021-0630
标准名称 | 标准号 |
---|---|
进出口动物源性食品中多肽类兽药残留量的测定 液相色谱-质谱/质谱法 | SN/T 2748-2010 |
生物活性肽功效评价 | GB/T 38790.1-2020 |
多肽抗氧化性测定 DPPH和ABTS法 | GB/T 39100-2020 |
多肽抗菌性测定 抑菌圈法 | GB/T 39101-2020 |
食品安全国家标准 胶原蛋白肽 | GB 31645-2018 |
食品安全国家标准 食品营养强化剂 酪蛋白磷酸肽 | GB 31617-2014 |
大豆肽粉 | GB/T 22492-2008 |
玉米低聚肽粉 | QB/T 4707-2014 |
小麦低聚肽粉 | QB/T 5298-2018 |
饲料中杆菌肽锌的测定 高效液相色谱法 | NY/T 726-2003 |
进出口食用动物、饲料中杆菌肽的检测方法 | SN/T 4807-2017 |
饲料中那西肽的测定 高效液相色谱法 | NY/T 3480-2019 |
食品营养强化剂 酪蛋白磷酸肽 | T/ZZB 1826-2020 |
特级大豆蛋白肽 | T/CCOA 28-2020 |
抗菌肽活性检测技术规程 | T/GDP 021-2020 |
叶枯肽检测方法 | JAP-158 |
标准名称 | 标准号 |
---|---|
进出口动物源性食品中多肽类兽药残留量的测定 液相色谱-质谱/质谱法 | SN/T 2748-2010 |
生物活性肽功效评价 | GB/T 38790.1-2020 |
多肽抗氧化性测定 DPPH和ABTS法 | GB/T 39100-2020 |
多肽抗菌性测定 抑菌圈法 | GB/T 39101-2020 |
食品安全国家标准 胶原蛋白肽 | GB 31645-2018 |
食品安全国家标准 食品营养强化剂 酪蛋白磷酸肽 | GB 31617-2014 |
大豆肽粉 | GB/T 22492-2008 |
玉米低聚肽粉 | QB/T 4707-2014 |
小麦低聚肽粉 | QB/T 5298-2018 |
饲料中杆菌肽锌的测定 高效液相色谱法 | NY/T 726-2003 |
进出口食用动物、饲料中杆菌肽的检测方法 | SN/T 4807-2017 |
饲料中那西肽的测定 高效液相色谱法 | NY/T 3480-2019 |
食品营养强化剂 酪蛋白磷酸肽 | T/ZZB 1826-2020 |
特级大豆蛋白肽 | T/CCOA 28-2020 |
抗菌肽活性检测技术规程 | T/GDP 021-2020 |
叶枯肽检测方法 | JAP-158 |
酶解对象 | 种类 | 酶活力/(U/g) | 最适温度/℃ | 最适pH值 | 水解时间/h |
---|---|---|---|---|---|
葵花籽[ | 木瓜蛋白酶 | 27 | 60.0 | 6.5 | 2 |
谷朊粉[ | 胰蛋白酶 | 4056 | 48.0 | 11.0 | 4 |
核桃[ | 胃蛋白酶 | 25 | 35.0 | 3.0 | 3 |
芡实[ | 中性蛋白酶 | 3000 | 45.0 | 8.0 | 3 |
碱性蛋白酶 | 4000 | 50.0 | 9.5 | 3 |
酶解对象 | 种类 | 酶活力/(U/g) | 最适温度/℃ | 最适pH值 | 水解时间/h |
---|---|---|---|---|---|
葵花籽[ | 木瓜蛋白酶 | 27 | 60.0 | 6.5 | 2 |
谷朊粉[ | 胰蛋白酶 | 4056 | 48.0 | 11.0 | 4 |
核桃[ | 胃蛋白酶 | 25 | 35.0 | 3.0 | 3 |
芡实[ | 中性蛋白酶 | 3000 | 45.0 | 8.0 | 3 |
碱性蛋白酶 | 4000 | 50.0 | 9.5 | 3 |
分离膜 | 膜类型 | 孔径大小/nm | 驱动力 | 主要应用 |
---|---|---|---|---|
微滤 | 对称微孔膜 | 50~10000.0 | 0.05~0.5 Mpa | 除菌、澄清、颗粒除杂 |
超滤 | 不对称微孔膜 | 2~50.0 | 0.2~1.0 Mpa | 除菌、澄清、浓缩分离 |
透析 | 对称、不对称膜 | 0.2~14.0 | 浓度差 | 小分子、无机盐分离 |
纳滤 | 对称微孔膜 | 小于2.0 | 0.35-3.0 Mpa | 分离、除盐、脱色、浓缩 |
反渗透 | 不对称复合膜 | 小于0.5 | 1.0-10.0Mpa | 浓缩、纯化、海水淡化 |
渗透汽化 | 致密或复合膜 | 小于0.5 | 浓度差 | 有机溶剂脱水、纯化 |
分离膜 | 膜类型 | 孔径大小/nm | 驱动力 | 主要应用 |
---|---|---|---|---|
微滤 | 对称微孔膜 | 50~10000.0 | 0.05~0.5 Mpa | 除菌、澄清、颗粒除杂 |
超滤 | 不对称微孔膜 | 2~50.0 | 0.2~1.0 Mpa | 除菌、澄清、浓缩分离 |
透析 | 对称、不对称膜 | 0.2~14.0 | 浓度差 | 小分子、无机盐分离 |
纳滤 | 对称微孔膜 | 小于2.0 | 0.35-3.0 Mpa | 分离、除盐、脱色、浓缩 |
反渗透 | 不对称复合膜 | 小于0.5 | 1.0-10.0Mpa | 浓缩、纯化、海水淡化 |
渗透汽化 | 致密或复合膜 | 小于0.5 | 浓度差 | 有机溶剂脱水、纯化 |
色谱 | 固定相/流动相 | 分离原理 |
---|---|---|
吸附色谱 | 吸附剂/有机溶剂 | 各组分与吸附剂吸附能力有差异 |
分配色谱 | 吸附剂/非极性溶剂 | 各组分在静相、流动相分配系数有差异 |
离子交换色谱 | 离子交换剂 | 各组分与离子交换剂亲和力不同 |
亲和色谱 | 配体/缓冲液 | 固定相专一性吸附某一组分 |
大孔吸附树脂 | 树脂/有机溶剂 | 类似物吸附类似物 |
凝胶过滤色谱 | 凝胶/乙腈 | 各组分的分子量在凝胶上受阻程度不同 |
聚焦色谱 | 缓冲交换剂/缓冲液 | 各组分的PI不同,在流动相中速度不同 |
色谱 | 固定相/流动相 | 分离原理 |
---|---|---|
吸附色谱 | 吸附剂/有机溶剂 | 各组分与吸附剂吸附能力有差异 |
分配色谱 | 吸附剂/非极性溶剂 | 各组分在静相、流动相分配系数有差异 |
离子交换色谱 | 离子交换剂 | 各组分与离子交换剂亲和力不同 |
亲和色谱 | 配体/缓冲液 | 固定相专一性吸附某一组分 |
大孔吸附树脂 | 树脂/有机溶剂 | 类似物吸附类似物 |
凝胶过滤色谱 | 凝胶/乙腈 | 各组分的分子量在凝胶上受阻程度不同 |
聚焦色谱 | 缓冲交换剂/缓冲液 | 各组分的PI不同,在流动相中速度不同 |
来源 | 名称 | 功能 | 参考文献 |
---|---|---|---|
辣椒 | 抗菌肽 | 破坏白色念珠菌 | [ |
萝卜 | 抑制金黄色葡萄球菌、葡萄球菌和大肠杆菌 | [ | |
黑豆 | 抗糖尿病肽 | 有效抑制葡萄糖转运蛋白2 (GLUT2)和钠-葡萄糖协同转运蛋白1 (SGLT1) | [ |
大米 | 抑制二肽基肽酶-Ⅳ | [ | |
羽扇豆 | 降胆固醇肽 | 抑制肝癌细胞中的HMG-CoA还原酶活性 | [ |
豇豆 | 减少胆固醇胶束增溶 | [ | |
铁皮石斛 | 抗癌肽 | 抗HepG-2、SGC-7901和MCF-7癌细胞增殖 | [ |
油菜籽 | 抑制人肝癌细胞株和MCF-7乳腺癌细胞增殖 | [ | |
大豆 | 抗菌肽 | 抑制溶藻弧菌和副溶血性弧菌生长 | [ |
降胆固醇肽 | 有效激活LDLR-SREBP 2途径并改善低密度脂蛋白摄取 | [ | |
抗癌肽 | 抗结肠直肠癌HT-29细胞的增殖 | [ |
来源 | 名称 | 功能 | 参考文献 |
---|---|---|---|
辣椒 | 抗菌肽 | 破坏白色念珠菌 | [ |
萝卜 | 抑制金黄色葡萄球菌、葡萄球菌和大肠杆菌 | [ | |
黑豆 | 抗糖尿病肽 | 有效抑制葡萄糖转运蛋白2 (GLUT2)和钠-葡萄糖协同转运蛋白1 (SGLT1) | [ |
大米 | 抑制二肽基肽酶-Ⅳ | [ | |
羽扇豆 | 降胆固醇肽 | 抑制肝癌细胞中的HMG-CoA还原酶活性 | [ |
豇豆 | 减少胆固醇胶束增溶 | [ | |
铁皮石斛 | 抗癌肽 | 抗HepG-2、SGC-7901和MCF-7癌细胞增殖 | [ |
油菜籽 | 抑制人肝癌细胞株和MCF-7乳腺癌细胞增殖 | [ | |
大豆 | 抗菌肽 | 抑制溶藻弧菌和副溶血性弧菌生长 | [ |
降胆固醇肽 | 有效激活LDLR-SREBP 2途径并改善低密度脂蛋白摄取 | [ | |
抗癌肽 | 抗结肠直肠癌HT-29细胞的增殖 | [ |
[1] |
LI Y, YU J. Research Progress in Structure-Activity Relationship of Bioactive Peptides[J]. Journal of medicinal food, 2015,18(2):147-156.
doi: 10.1089/jmf.2014.0028 URL |
[2] |
ISSAM A L A, ZIMMERMANN S, REICHLING J, et al. Pharmacological synergism of bee venom and melittin with antibiotics and plant secondary metabolites against multi-drug resistant microbial pathogens[J]. Phytomedicine, 2015,22(2):245-255.
doi: 10.1016/j.phymed.2014.11.019 URL |
[3] | CHANG W T, PAN C Y, RAJANBABU V, et al. Tilapia (Oreochromis mossambicus) antimicrobial peptide,hepcidin 1-5,shows antitumor activity in cancer cells[J]. Peptide, 2011,32(2):342-352. |
[4] | 郭帅, 李艳. 椰子活性蛋白与功能肽的研究进展[J]. 食品科技, 2018,43(5):67-71,76. |
[5] |
FOSGERAU K, HOFFMANN T. Peptide therapeutics: current status and future directions[J]. Drug discovery today, 2015,20(1):122-128.
doi: 10.1016/j.drudis.2014.10.003 URL |
[6] | 蔡燕萍, 余晓婉, 张庆春, 等. 水产品生物活性肽的研究进展[J]. 食品与发酵工业, 2020,46(16):249-256. |
[7] | VANVI A, TSOPMO A. Pepsin digested oat bran proteins: separation, antioxidant activity, and identification of new peptides[J]. Journal of chemistry, 2016:1-8. |
[8] |
NAKAMURA Y, YAMAMOTO N, SAKAI K, et al. Purification and characterization of Angiotensin I-converting enzyme inhibitors from sour milk[J]. Journal of dairy science, 1995,78:777-783.
doi: 10.3168/jds.S0022-0302(95)76689-9 URL |
[9] | 赵涛. 葵花籽粕中绿原酸和蛋白酶解肽的制备及生物活性研究[D]. 呼和浩特市: 内蒙古农业大学, 2013. |
[10] | 刘玉婷, 潘进权, 刘夏婷. 胰蛋白酶水解谷朊粉制备多肽的工艺优化[J]. 中国酿造, 2015,34(10):18-22. |
[11] | 颜小捷, 刘幼娴, 郑立浪, 等. 胃蛋白酶和木瓜蛋白酶水解核桃蛋白工艺研究[J]. 广西植物, 2014,34(2):183-188. |
[12] | 林栋, 李丽娟, 何英, 等. 芡实多肽的分步酶解法制备及抗氧化活性研究[J]. 食品科技, 2021,46(2):217-224. |
[13] | 张灿. 银杏活性多肽的制备及功能性多肽产品研究[D]. 南京: 南京林业大学, 2017. |
[14] |
Lu Q, Li W Z, Zhu X F. Overview of fuel properties of biomass fast pyrolysis oils[J]. Energy conversion and management, 2009,50(5):1376-1383.
doi: 10.1016/j.enconman.2009.01.001 URL |
[15] | 王惠敏, 户佩, 蔡甜甜, 等. 抗氧化胡萝卜籽肽的分离鉴定及活性表征[J]. 食品与发酵工业, 2019,45(2):95-100. |
[16] |
WATTANASIRITHAM L, THEERAKULKAIT C, WICKRAMASEKARA S, et al. Isolation and identification of antioxidant peptides from enzymatically hydrolyzed rice bran protein[J]. Food chemistry, 2016,192:156-162.
doi: 10.1016/j.foodchem.2015.06.057 URL |
[17] | 周媛媛, 周瑞宝. 大豆多肽的分离纯化与抗氧化活性研究[J]. 中国油脂, 2008(5):34-36. |
[18] |
EVANS J L, GOLDFINE I D, MADDUX B A, et al. Are oxidative stress-activated signaling pathways mediators of insulin resistance and {beta}-cell dysfunction?[J]Diabetes, 2003,52:1-8.
doi: 10.2337/diabetes.52.1.1 URL |
[19] | BIEMANN K. Structure Determination of Natural Products by Mass Spectrometry[J]. Annual review of analytical chemistry, 2015,8(Null):1-19. |
[20] |
ASHLEY C G, MICHAEL T B. Identification of site-specific heterogeneity in peptide drugs using intact mass spectrometry with electron transfer dissociation[J]. Rapid communications in mass spectrometry, 2014,28(15):1757-1763.
doi: 10.1002/rcm.6957 URL |
[21] | KHAN H, ALI J. UHPLC/Q-TOF-MS Technique: Introduction and Applications[J]. Letters in organic chemistry, 2015:371-378. |
[22] | HE L, WEISBROD C R, MARSHALL A G, et al. Protein de novo sequencing by top-down and middle-down MS/MS: Limitations imposed by mass measurement accuracy and gaps in sequence coverage[J]. International journal of mass spectrometry, 2017,11(12):107-113. |
[23] |
CHEANYEH C, CHIEN F L. Novel Dual Two-Dimensional Liquid Chromatography Online Coupled to Ultraviolet Detector, Fluorescence Detector, Ion-Trap Mass Spectrometer for Short Peptide Amino Acid Sequence Determination with Bottom-Up Strategy[J]. Journal of the chinese chemical society, 2018,65(6):714-725.
doi: 10.1002/jccs.201700380 URL |
[24] | WEN C T, ZHANG J X, ZHANG H H, et al. Plant protein-derived antioxidant peptides: Isolation, identification, mechanism of action and application in food systems: A review[J]. Trends in food science & technology, 2020,105:308-322. |
[25] | 袁艳超, 贾泽, 赖爱兰, 等. 混菌发酵芝麻粕制备芝麻多肽及其体外抗氧化活性研究[J]. 基因组学与应用生物学, 2018,37(5):2068-2073. |
[26] | 夏吉安, 黄凯, 李森, 等. 绿豆抗氧化肽的酶法制备及其抗氧化活性[J]. 食品与生物技术学报, 2020,39(10):40-47. |
[27] | 赵妍, 路清宇. 双酶酶解制备黑小麦麸皮抗氧化肽[J]. 食品工业, 2021,42(1):135-140. |
[28] |
NWACHUKWU I D, ALUKO R E. Structural and functional properties of food protein-derived antioxidant peptides[J]. Journal of food biochemistry, 2019,43(1), e12761.
doi: 10.1111/jfbc.12761 URL |
[29] |
HIROSE A, MIYASHITA K. Inhibitory effect of proteins and their hydrolysates on the oxidation of triacylglycerols containing docosahexaenoic acids in emulsion[J]. Journal of the japanese society for food science and technology, 1999,46(12):799-805.
doi: 10.3136/nskkk.46.799 URL |
[30] |
HIMAYA S, RYU B, NGO D, et al. Peptide Isolated from Japanese Flounder Skin Gelatin Protects against Cellular Oxidative Damage[J]. Journal of agricultural and food chemistry, 2012,60(36):9112-9119.
doi: 10.1021/jf302161m URL |
[31] | TAN H. Preparation and evaluation of an antioxidant peptide from collagen hydrolysate of skipjack tuna fishbone[J]. Journal of fisheries of china, 2014,38(1):143-148. |
[32] |
ZHANG M, MU T H, SUN M J. Purification and identification of antioxidant peptides from sweet potato protein hydrolysates by alcalase[J]. Journal of Functional foods, 2014,7:191-200.
doi: 10.1016/j.jff.2014.02.012 URL |
[33] |
GUANG C, PHILLIPS R D, JIANG B. et al. Three key proteases-angiotensin-I-converting enzyme (ACE), ACE2 and renin-within and beyond the renin-angiotensin system[J]. Archives of cardiovascular diseases, 2012,105:373-385.
doi: 10.1016/j.acvd.2012.02.010 URL |
[34] |
GARCÍA-TEJEDOR A, SÁNCHEZ-RIVERA L, CASTELLÓ-RUIZ M, et al. Novel antihypertensive lactoferrin-derived peptides produced by Kluyveromyces marxianus: Gastrointestinal stability profile and in vivo angiotensin I-converting enzyme (ACE) inhibition. [J]Journal of agricultural and food chemistry, 2014,62:1609-1616.
doi: 10.1021/jf4053868 URL |
[35] |
MALOMO S A, ONUH J O, GIRGIH A T, et al. Structural and antihypertensive properties of enzymatic hemp seed protein hydrolysates[J]. Nutrients 2015,7:7616-7632.
doi: 10.3390/nu7095358 URL |
[36] |
FITZGERALD C, ALUKO R E, HOSSAIN M, et al. Potential of a renin inhibitory peptide from the red seaweed Palmaria palmata as a functional food ingredient following confirmation and characterization of a hypotensive effect in spontaneously hypertensive rats[J]Journal of agricultural and food chemistry, 2014,62:8352-8356.
doi: 10.1021/jf500983n URL |
[37] |
FEKETE Á A, GIVENS D I, LOVEGROVE J A. Casein-derived lactotripeptides reduce systolic and diastolic blood pressure in a meta-analysis of randomised clinical trials[J]. Nutrients, 2015,7:659-681.
doi: 10.3390/nu7010659 URL |
[38] |
YU Z, YIN Y, ZHAO W, et al. Antihypertensive effect of angiotensin-converting enzyme inhibitory peptide RVPSL on spontaneously hypertensive rats by regulating gene expression of the renin-angiotensin System[J]. Journal of agricultural and food chemistry, 2014,62:912-917.
doi: 10.1021/jf405189y URL |
[39] | DALIRI EB-M, LEE BH, OH D H. Current perspectives on antihypertensive probiotics[J]. Probiotics antimicrob proteins, 2016:91-101. |
[40] | 姚雨杉. 鱿鱼加工副产物酶解、发酵工艺的优化和抗高血压肽的制备[D]. 广州: 华南理工大学, 2020. |
[41] |
CHALAMAIAH M, YU W, WU J. Immunomodulatory and anticancer protein hydrolysates (peptides) from food proteins: A review[J]. Food chemistry, 2018,245:205-222.
doi: 10.1016/j.foodchem.2017.10.087 URL |
[42] |
CHALAMAIAH M, HEMALATHA R, JYOTHIRMAYI T, et al. Immunomodulatory effects of protein hydrolysates from rohu (Labeo rohita) egg in BALB/c mice[J]. Food research international, 2014,62:1054-1061.
doi: 10.1016/j.foodres.2014.05.050 URL |
[43] |
NDIAYE F, VUONG T, DUARTE J, et al. Anti-oxidant, anti-inflammatory and immunomodulating properties of an enzymatic protein hydrolysate from yellow field pea seeds[J]. European journal of nutrition, 2012,51:29-37.
doi: 10.1007/s00394-011-0186-3 URL |
[44] |
WU W J, ZHANG M M, SUN C Z, et al. Enzymatic preparation of immunomodulatory hydrolysates from defatted wheat germ (Triticum vulgare) globulin[J]. International journal of food science and technology, 2016,51:2556-2566.
doi: 10.1111/ijfs.13238 URL |
[45] |
JACQUOT A, GAUTHIER S F. Proliferative effects of synthetic peptides from β-lactoglobulin and α-lactalbumin on murine splenocytes[J]. International dairy journal, 2010,20:514-521.
doi: 10.1016/j.idairyj.2010.02.013 URL |
[46] |
HOU H, FAN Y, LI B, et al. Preparation of immunomodulatory hydrolysates from Alaska pollock frame[J]. Journal of the science of food and agriculture, 2012,92:3029-3038.
doi: 10.1002/jsfa.5719 URL |
[47] |
HE X Q, CAO W H, PAN G K, et al. Enzymatic hydrolysis optimization of Paphia undulata and lymphocyte proliferation activity of the isolated peptide fractions[J]. Journal of the science of food and agriculture, 2015,95:1544-1553.
doi: 10.1002/jsfa.6859 URL |
[48] |
TAVEIRA G B, CARVALHO A O, RODRIGUES R, et al. Thionin-like peptide from Capsicum annuum fruits: Mechanism of action and synergism with fluconazole against Candida species[J]. BMC microbiol., 2016,16:12.
doi: 10.1186/s12866-016-0626-6 URL |
[49] |
JIANG J, SHI B, ZHU D, et al. Characterization of a novel bacteriocin produced by Lactobacillus sakei LSJ618 isolated from traditional Chinese fermented radish[J]. Food control, 2012,23(2):338-44.
doi: 10.1016/j.foodcont.2011.07.027 URL |
[50] |
MOJICA L, DE MEJIA E G, GRANADOS S, et al. Evaluation of the hypoglycemic potential of a black bean hydrolyzed protein isolate and its pure peptides using in silico, in vitro and in vivo approaches[J]. Journal of functional foods, 2017,31:274-286.
doi: 10.1016/j.jff.2017.02.006 URL |
[51] |
HATANAKA T, URAJI M, FUJITA A, et al. Anti-oxidation activities of rice-derived peptides and their inhibitory effects on dipeptidyl peptidase-IV[J]. International journal of peptide research and therapeutics, 2015,21:479-485.
doi: 10.1007/s10989-015-9478-4 URL |
[52] |
LAMMI C, ZANONI C, CALABRESI L, et al. Lupin protein exerts cholesterol-lowering effects targeting PCSK9: From clinical evidences to elucidation of the in vitro molecular mechanism using HepG2 cells[J]. Journal of functional foods 2016,23:230-240.
doi: 10.1016/j.jff.2016.02.042 URL |
[53] |
MARQUES M R, FREITAS R. Peptides from cowpea present antioxidant activity, inhibit cholesterol synthesis and its solubilization into micelles[J]. Food chemistry, 2015,168:288-293.
doi: 10.1016/j.foodchem.2014.07.049 URL |
[54] | ZHENG Q, QIU D, LIU X, et al. Antiproliferative effect of dendrobium catenatum lindley polypeptides against human liver, gastric and breast cancer cell lines[J]. Food & function, 2015,6:1489-1495. |
[55] |
XIE H H, WANG Y, ZHANG J, et al. Study of the fermentation conditions and the antiproliferative activity of rapeseed peptides by bacterial and enzymatic cooperation[J]. International journal of food science technology, 2015,50:619-625.
doi: 10.1111/ijfs.12682 URL |
[56] | CHENG A C, LIN H L. Isolation and characterization of antimicrobial peptides derived from Bacillus subtilis E20-fermented soybean meal and its use for preventing vibrio infection in shrimp aquaculture[J]. Fish & shellfish immunology, 2017,67:270-279. |
[57] |
LAMMI C, ZANONI C, ARNOLDI A, et al. Three peptides from soy glycinin, modulate cholesterol metabolism in HepG2 cells through the activation of the LDLR-SREBP2 pathway[J]. Journal of functional foods, 2015,14:469-478.
doi: 10.1016/j.jff.2015.02.021 URL |
[58] |
VITAL DAL, DE MEJÍA EG, et al. Peptides in common bean fractions inhibit human colorectal cancer cells[J]. Food chemistry, 2014,157:347-355.
doi: 10.1016/j.foodchem.2014.02.050 URL |
[59] | ACQUAH C, CHAN Y W, PAN S, et al. Structure-informed separation of bioactive peptides[J]. Journal of food biochemistry, 2019,e12765 |
[60] |
CACCIOLA F, DUGO P, MONDELLO L. Multidimensional liquid chromatography in food analysis[J]. TrAC-trends in analytical chemistry, 2017,96:116-223.
doi: 10.1016/j.trac.2017.06.009 URL |
[1] | ZHANG Junwei, ZHANG Xiaohu, XU Yucong. Effect of South Schisandra chinensis Ester B-Nisin-KGM Compound Coating Agent on Fresh Meat Preservation [J]. Chinese Agricultural Science Bulletin, 2022, 38(34): 120-129. |
[2] | Han Lixia, Wei Shengke, Feng Wenjuan. Gliotoxin Waste Mycelium: Antibacterial Activity and Its Application [J]. Chinese Agricultural Science Bulletin, 2021, 37(30): 106-110. |
[3] | Li Fuqiang, Zhang Tingxin, Li Xiaojie, Zhu Liping, Yan Shigan. Bioactive Peptides Derived from Phycobiliprotein: A Review [J]. Chinese Agricultural Science Bulletin, 2021, 37(27): 70-76. |
[4] | Long Likun, Zhao Ning, Xia Wei, Li Congcong, Dong Liming, Yan Wei, Li Feiwu. CM8101 Transgenic Maize: Qualitative PCR Assay Detection of Specificity [J]. Chinese Agricultural Science Bulletin, 2021, 37(23): 23-28. |
[5] | Wei Xiaxia, Zhang Xiaohu, Zheng Yan. Application of Eutectic Solvent Extraction of Baicalin and Its Compound Preservation Solution in Fresh Meat [J]. Chinese Agricultural Science Bulletin, 2021, 37(13): 127-134. |
[6] | Xiao Qinjian, Zhang Xiaohu, Gao Mengdie, Zhang Junwei. Extraction and Separation of Schisandrin B and Its Compound Preservative [J]. Chinese Agricultural Science Bulletin, 2021, 37(12): 126-135. |
[7] | Kong Lingbo, Wang Jingjing, Lin Qiao, He Wei, Yang Xiaowei. The Patent Development Trend in Global Maize Molecular Breeding [J]. Chinese Agricultural Science Bulletin, 2020, 36(31): 121-129. |
[8] | Xie Qian, Zhang Xiaohu, Pan Cunli. The Application of Forsythosides-Lysozyme-KGM Compound Fresh-Keeping Film in Egg Preservation [J]. Chinese Agricultural Science Bulletin, 2020, 36(22): 136-142. |
[9] | Zhang Xiaohu, Li Qian, Wei Xiaxia, Liu Gengmei, He Yong. Polyphenol Extraction from Forsythia suspensa Fruit and Application of Compound Coating Preservative in Grape Freshness Preservation [J]. Chinese Agricultural Science Bulletin, 2020, 36(4): 135-141. |
[10] | . Wogonin Extraction from Shangluo Scutellaria baicalensis and Application of Its Compound Preservative Solution [J]. Chinese Agricultural Science Bulletin, 2019, 35(22): 147-155. |
[11] | . Research Progress of Protoplast Culture in Cereal Crops [J]. Chinese Agricultural Science Bulletin, 2016, 32(35): 19-23. |
[12] | . Mining SSR Molecular Marker Sites with MISA Tool for Different Types of Sequences [J]. Chinese Agricultural Science Bulletin, 2016, 32(10): 150-156. |
[13] | . Genetic Analysis of Nicotine Conversion of Burley Tobacco Using Mixed Model of Major Gene and Polygene [J]. Chinese Agricultural Science Bulletin, 2013, 29(34): 61-65. |
[14] | . Research Progress on Application of Gene Chip in Agriculture [J]. Chinese Agricultural Science Bulletin, 2012, 28(33): 187-193. |
[15] | yunfeng Shi. A Rapid and Effective Method for Isolating Total DNA from Huperzia crispata’s Endophyte Fungi Mycelia [J]. Chinese Agricultural Science Bulletin, 2012, 28(6): 183-188. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||