Chinese Agricultural Science Bulletin ›› 2022, Vol. 38 ›› Issue (33): 145-151.doi: 10.11924/j.issn.1000-6850.casb2022-0687
Special Issue: 生物技术
Previous Articles Next Articles
LU Shimin1,2(), LI Yayuan1,2,3, LIU Chong1,2, LIU Xingguo1,2, BAO Xuteng1,2, TIAN Changfeng1,2, GU Zhaojun1,2, ZHOU Liang1,2, WU Fan1,2(
)
Received:
2022-08-22
Revised:
2022-09-30
Online:
2022-11-25
Published:
2022-11-22
Contact:
WU Fan
E-mail:lushimin@fmiri.ac.cn;wufan@fmiri.ac.cn
CLC Number:
LU Shimin, LI Yayuan, LIU Chong, LIU Xingguo, BAO Xuteng, TIAN Changfeng, GU Zhaojun, ZHOU Liang, WU Fan. Ammonia-oxidizing Microorganisms and Their Application in Water Quality Control of Pond Aquaculture in China[J]. Chinese Agricultural Science Bulletin, 2022, 38(33): 145-151.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2022-0687
[1] | 农业农村部渔业渔政管理局. 2021中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2019:1-182 |
[2] | 陶冶, 朱健, 李冰, 等. 基于氮、磷收支的人工湿地-池塘循环水养殖系统净化效果评价[J]. 中国海洋大学学报:自然科学版, 2021, 51(2):36-45. |
[3] |
ACKEFORS H, ENELL M. The release of nutrients and organic matter from aquaculture systems in Nordic countries[J]. Journal of applied ichthyology, 1994, 10(4):225-241.
doi: 10.1111/j.1439-0426.1994.tb00163.x URL |
[4] | 刘兴国. 池塘养殖污染与生态工程化调控技术研究[D]. 南京: 南京农业大学, 2011. |
[5] |
LU S, LIAO M, XIE C, et al. Seasonal dynamics of ammonia-oxidizing microorganisms in freshwater aquaculture ponds[J]. Annals of microbiology, 2015, 65(2):651-657.
doi: 10.1007/s13213-014-0903-2 URL |
[6] |
ZHAO M, AWEYA J J, FENG Q, et al. Ammonia stress affects the structure and function of hemocyanin in Penaeus vannamei[J]. Ecotoxicology and environmental safety, 2022, 241:113827.
doi: 10.1016/j.ecoenv.2022.113827 URL |
[7] |
RANDALL D J, TSUI T K N. Ammonia toxicity in fish[J]. Marine pollution bulletin, 2002, 45(1-12):17-23.
pmid: 12398363 |
[8] |
AL-AJEEL S, SPASOV E, SAUDER L A, et al. Ammonia-oxidizing archaea and complete ammonia-oxidizing bacteria in water treatment systems[J]. water research X, 2022, 15:100131.
doi: 10.1016/j.wroa.2022.100131 URL |
[9] |
MARTENS-HABBENA W, BERUBE P M, URAKAWA H, et al. Ammonia oxidation kinetics determine niche separation of nitrifying archaea and bacteria[J]. Nature, 2009, 461(7266): 976-979.
doi: 10.1038/nature08465 URL |
[10] |
WU P, CHEN J, GARLAPATI V K, et al. Novel insights into anammox-based processes: a critical review[J]. Chemical engineering journal, 2022, 444:136534.
doi: 10.1016/j.cej.2022.136534 URL |
[11] | 贺纪正, 张丽梅. 氨氧化微生物生态学与氮循环研究进展[J]. 生态学报, 2009, 29(1):406-415. |
[12] |
MULDER A, VAN DE GRAAF A A, ROBERTSON L A, et al. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor[J]. FEMS microbiology ecology, 1995, 16(3):177-183.
doi: 10.1111/j.1574-6941.1995.tb00281.x URL |
[13] |
LU S, LIU X, LIU C, et al. A Review of ammonia-oxidizing archaea and anaerobic ammonia-oxidizing bacteria in the aquaculture pond environment in China[J]. Frontiers in microbiology, 2021, 12:775794.
doi: 10.3389/fmicb.2021.775794 URL |
[14] |
SHEN L, WU H, GAO Z, et al. Evidence for anaerobic ammonium oxidation process in freshwater sediments of aquaculture ponds[J]. Environmental science and pollution research, 2016, 23(2):1344-1352.
doi: 10.1007/s11356-015-5356-z URL |
[15] |
KÖNNEKE M, BERNHARD A E, DE LA TORRE J R, et al. Isolation of an autotrophic ammonia-oxidizing marine archaeon[J]. Nature, 2005, 437(7058):543-546.
doi: 10.1038/nature03911 URL |
[16] |
LEININGER S, URICH T, SCHLOTER M, et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils[J]. Nature, 2006, 442(7104):806-809.
doi: 10.1038/nature04983 URL |
[17] |
LU S, LIU X, LIU C, et al. Review of ammonia-oxidizing bacteria and archaea in freshwater ponds[J]. Reviews in environmental science and bio/technology, 2019, 18(1):1-10.
doi: 10.1007/s11157-018-9486-x URL |
[18] |
DAIMS H, LEBEDEVA E V, PJEVAC P, et al. Complete nitrification by Nitrospira bacteria[J]. Nature, 2015, 528(7583):504-509.
doi: 10.1038/nature16461 URL |
[19] |
VAN KESSEL M A H J, SPETH D R, ALBERTSEN M, et al. Complete nitrification by a single microorganism[J]. Nature, 2015, 528(7583):555-559.
doi: 10.1038/nature16459 URL |
[20] | TAN C, YIN C, LI W, et al. Comammox Nitrospira play a minor role in N2O emissions from an alkaline arable soil[J]. Soil biology & biochemistry, 2022,171,108720. |
[21] |
HE S, ZHAO Z, TIAN Z, et al. Comammox bacteria predominate among ammonia-oxidizing microorganisms in municipal but not in refinery wastewater treatment plants[J]. Journal of environmental management, 2022, 316:115271.
doi: 10.1016/j.jenvman.2022.115271 URL |
[22] | ZHAO Y, WANG J, LIU Z, et al. Biofilm: A strategy for the dominance of comammox Nitrospira[J]. Journal of cleaner production, 2022:132361. |
[23] |
PREENA P G, REJISH KUMAR V J, SINGH I S B. Nitrification and denitrification in recirculating aquaculture systems: the processes and players[J]. Reviews in aquaculture, 2021, 13(4):2053-2075.
doi: 10.1111/raq.12558 URL |
[24] |
TORNO J, EINWÄCHTER V, SCHROEDER J P, et al. Nitrate has a low impact on performance parameters and health status of on-growing European sea bass (Dicentrarchus labrax) reared in RAS[J]. Aquaculture, 2018, 489:21-27.
doi: 10.1016/j.aquaculture.2018.01.043 URL |
[25] | 宋协法, 杨晓晗, 黄志涛. 硝酸盐对鱼类毒性研究进展[J]. 中国海洋大学学报:自然科学版, 2019, 49(9):34-41. |
[26] |
YU J, WANG Y, XIAO Y, et al. Effects of chronic nitrate exposure on the intestinal morphology, immune status, barrier function, and microbiota of juvenile turbot (Scophthalmus maximus)[J]. Ecotoxicology and environmental safety, 2021, 207:111287.
doi: 10.1016/j.ecoenv.2020.111287 URL |
[27] |
ZHU G, WANG X, WANG S, et al. Towards a more labor-saving way in microbial ammonium oxidation: a review on complete ammonia oxidization (comammox)[J]. Science of the total environment, 2022, 829:154590.
doi: 10.1016/j.scitotenv.2022.154590 URL |
[28] |
GROENEWEG J, SELLNER B, TAPPE W. Ammonia oxidation in Nitrosomonas at NH3 concentrations near Km: effects of pH and temperature[J]. Water research, 1994, 28(12):2561-2566.
doi: 10.1016/0043-1354(94)90074-4 URL |
[29] |
ZHANG J, MIAO Y, ZHANG Q, et al. Mechanism of stable sewage nitrogen removal in a partial nitrification-anammox biofilm system at low temperatures: microbial community and EPS analysis[J]. Bioresource technology, 2020, 297:122459.
doi: 10.1016/j.biortech.2019.122459 URL |
[30] |
LU S, LIAO M, XIE C, et al. Removing ammonium from aquaculture ponds using suspended biocarrier-immobilized ammonia-oxidizing microorganisms[J]. Annals of microbiology, 2015, 65(4):2041-2046.
doi: 10.1007/s13213-015-1042-0 URL |
[31] |
STAHL D A, DE LA TORRE J R. Physiology and diversity of ammonia-oxidizing archaea[J]. Annual review of microbiology, 2012, 66:83-101.
doi: 10.1146/annurev-micro-092611-150128 pmid: 22994489 |
[32] |
MA B, WANG S, CAO S, et al. Biological nitrogen removal from sewage via anammox: Recent advances[J]. Bioresource technology, 2016, 200:981-990.
doi: 10.1016/j.biortech.2015.10.074 pmid: 26586538 |
[33] |
ISAKA K, DATE Y, KIMURA Y, et al. Nitrogen removal performance using anaerobic ammonium oxidation at low temperatures[J]. FEMS microbiology letters, 2008, 282(1):32-38.
doi: 10.1111/j.1574-6968.2008.01095.x pmid: 18355289 |
[34] |
EMERSON K, RUSSO R C, LUND R E, et al. Aqueous ammonia equilibrium calculations: effect of pH and temperature[J]. Journal of the fisheries board of Canada, 1975, 32(12):2379-2383.
doi: 10.1139/f75-274 URL |
[35] |
HE J Z, HU H W, ZHANG L M. Current insights into the autotrophic thaumarchaeal ammonia oxidation in acidic soils[J]. Soil biology and biochemistry, 2012, 55:146-154.
doi: 10.1016/j.soilbio.2012.06.006 URL |
[36] | WURTS W, DURBOROW R. Interactions of pH, carbon dioxide, alkalinity and hardness in fish ponds[J]. Southern regional aquaculture centre, 1992, 464:1-3. |
[37] |
FRENCH E, KOZLOWSKI J A, MUKHERJEE M, et al. Ecophysiological characterization of ammonia-oxidizing archaea and bacteria from freshwater[J]. Applied and environmental microbiology, 2012, 78(16):5773-5780.
doi: 10.1128/AEM.00432-12 pmid: 22685142 |
[38] |
OSHIKI M, SATOH H, OKABE S. Ecology and physiology of anaerobic ammonium oxidizing bacteria[J]. Environmental microbiology, 2016, 18(9):2784-2796.
doi: 10.1111/1462-2920.13134 pmid: 26616750 |
[39] |
DENG M, HOU J, SONG K, et al. Community metagenomic assembly reveals microbes that contribute to the vertical stratification of nitrogen cycling in an aquaculture pond[J]. Aquaculture, 2020, 520:734911.
doi: 10.1016/j.aquaculture.2019.734911 URL |
[40] |
AUGUET J C, TRIADO-MARGARIT X, NOMOKONOVA N, et al. Vertical segregation and phylogenetic characterization of ammonia-oxidizing Archaea in a deep oligotrophic lake[J]. The ISME journal, 2012, 6(9):1786-1797.
doi: 10.1038/ismej.2012.33 URL |
[41] |
SOLIMAN M, ELDYASTI A. Ammonia-oxidizing bacteria (AOB): Opportunities and applications-a review[J]. Reviews in environmental science and bio/technology, 2018, 17(2):285-321.
doi: 10.1007/s11157-018-9463-4 URL |
[42] | 邓宇, 杨东海, 陈慧珍, 等. 生物载体在污水处理中的研究进展[J]. 环境科学与管理, 2022, 47(4):107-112. |
[43] | 陆诗敏. 淡水养殖池塘环境中氨氧化微生物的研究[D]. 武汉: 华中农业大学, 2014. |
[44] |
LU S, LIU X, LIU C, et al. Influence of photoinhibition on nitrification by ammonia-oxidizing microorganisms in aquatic ecosystems[J]. Reviews in environmental science and bio/technology, 2020, 19(3):531-542.
doi: 10.1007/s11157-020-09540-2 URL |
[45] |
LIU Y, NGO H H, GUO W, et al. Autotrophic nitrogen removal in membrane-aerated biofilms: Archaeal ammonia oxidation versus bacterial ammonia oxidation[J]. Chemical engineering journal, 2016, 302:535-544.
doi: 10.1016/j.cej.2016.05.078 URL |
[46] |
LU J, ZHANG Y, WU J, et al. Nitrogen removal in recirculating aquaculture water with high dissolved oxygen conditions using the simultaneous partial nitrification, anammox and denitrification system[J]. Bioresource technology, 2020, 305:123037.
doi: 10.1016/j.biortech.2020.123037 URL |
[47] |
GUERRERO M A, JONES R D. Photoinhibition of marine nitrifying bacteria. I. Wavelength-dependent response[J]. Marine ecology progress series, 1996, 141:183-192.
doi: 10.3354/meps141183 URL |
[48] | WU D, CHENG M, ZHAO S, et al. Algal growth enhances light-mediated limitation of bacterial nitrification in an aquaculture system[J]. Water, air, & soil pollution, 2020, 231(2):1-9. |
[49] |
LIU X G, SHAO Z, CHENG G, et al. Ecological engineering in pond aquaculture:a review from the whole-process perspective in China[J]. Reviews in aquaculture, 2021, 13(2):1060-1076.
doi: 10.1111/raq.12512 URL |
[50] | 刘梅, 原居林, 倪蒙, 等. “三池两坝”多级组合工艺对内陆池塘养殖尾水的处理[J]. 环境工程技术学报, 2021, 11(1):97-106. |
[51] | 黄海平. 水蕹菜浮床在精养鱼池中的应用效果研究[D]. 武汉: 华中农业大学, 2012. |
[1] | DUAN Qingqing, HAN Meimei, TAN Yueqiang, ZHANG Zikun. Effects of Supplemental Light Quality and Duration on the Growth and Carbon Metabolism of Leaves of Greenhouse-grown Sweet Pepper [J]. Chinese Agricultural Science Bulletin, 2023, 39(1): 37-44. |
[2] | GAO Wenrui, SUN Yanjun, HAN Bing, FEI Cong, WANG Xiansheng, XU Gang. Effects of Low Light on Quality and Sucrose Metabolism of Watermelon Fruit [J]. Chinese Agricultural Science Bulletin, 2023, 39(1): 56-61. |
[3] | CAO Qiumei, WANG Luyi, LI Xiaoman, LI Junda, LIU Mengtian, ZHENG Yao, WANG Lihua. Effects of Effective Microorganisms on Growth Performance, Nutrient Digestibility and Fecal Ammonia Emission of BALB/C Mice [J]. Chinese Agricultural Science Bulletin, 2022, 38(7): 124-128. |
[4] | ZHANG Hongfen, YANG Lijie, ZHAO Yujuan, ZHANG Feng. Strong Cool Summer in East Gansu in 2020: Climate Characteristics and the Impact on Agriculture [J]. Chinese Agricultural Science Bulletin, 2022, 38(5): 117-123. |
[5] | GAO Wenrui, SUN Yanjun, HAN Bing, LI Decui, FEI Cong, WANG Xiansheng, XU Gang. Effects of Low Light on Plant Growth and Fruit Development of Watermelon [J]. Chinese Agricultural Science Bulletin, 2022, 38(34): 39-45. |
[6] | XU Xiaomei, LI Ying, HENG Zhou, XU Xiaowan, LI Tao, WANG Hengming. CaWRKY Transcription Factors Induced by Phytophthora capsici: Screening and Signal Pathway Analysis [J]. Chinese Agricultural Science Bulletin, 2022, 38(32): 22-31. |
[7] | ZHA Qian, XI Xiaojun, YIN Xiangjing, JIANG Aili. Effects of Supplementary Lighting in Veraison Period on Fruit Quality of Table Grape ‘Kyoho’ and ‘Jumeigui’ [J]. Chinese Agricultural Science Bulletin, 2022, 38(31): 55-59. |
[8] | LI Zhou, YANG Yayun, DAI Luyuan, ZHANG Feifei, A Xinxiang, DONG Chao, WANG Bin, TANG Cuifeng. Rice Bacterial Blight Resistance Genes and Resistance-related Factors: A Review on Research and Utilization [J]. Chinese Agricultural Science Bulletin, 2022, 38(30): 91-99. |
[9] | CHEN Qingqing, WANG Chunlin, ZHANG Haishan, ZHANG Aifang. Rice Blast and Bacterial Blight of Regional Trial Rice Varieties in Anhui Province: Resistance Analysis [J]. Chinese Agricultural Science Bulletin, 2022, 38(3): 134-139. |
[10] | MENG Qinglei, ZHANG Yuliang, ZHAO Donghui, JIA Weijuan, HE Yunjiang, CHI Shanshan, CHEN Yunjiao, WANG Xueli. Typing Methods of Bacillus cereus: Research Progress [J]. Chinese Agricultural Science Bulletin, 2022, 38(29): 61-66. |
[11] | JIANG Shihua, CHI Zaixiang, ZENG Xiaoshan, YANG Xiuxun, MO Qingzhong, CHEN Jinmei, LEI Ying. Meteorological Conditions for Late Blight Occurrence on Winter-planting Potato in Guizhou Province [J]. Chinese Agricultural Science Bulletin, 2022, 38(27): 129-137. |
[12] | ZHU Wenjie, ZHENG Mingjie, KANG Yuguo. Effects of Different Light Radiation Intensities on Photosynthesis of Three Vine Plants [J]. Chinese Agricultural Science Bulletin, 2022, 38(26): 27-31. |
[13] | LIU Danyang, CUI Rufei, GENG Gui, WANG Yuguang. Pathogenic Bacteria of Sugar Beet Blight: Isolation and Identification [J]. Chinese Agricultural Science Bulletin, 2022, 38(24): 113-117. |
[14] | TAO Zhengda, LI Haoyu, ZHAO Jingxian, WANG Jun. Meteorological Conditions of Dongshan Loquat in 2019 - 2021: Evaluation and Comparative Analysis [J]. Chinese Agricultural Science Bulletin, 2022, 38(23): 95-101. |
[15] | LIAN Xiaoqian, TAO Changzhu, GUO Haolan, LI Nana, CAO Yue, WU Pengfei. Effects of Light on Biological Productivity and Photosynthetic Capacity of Phragmites australis [J]. Chinese Agricultural Science Bulletin, 2022, 38(20): 47-52. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||