Chinese Agricultural Science Bulletin ›› 2019, Vol. 35 ›› Issue (10): 36-42.doi: 10.11924/j.issn.1000-6850.casb18110045
Previous Articles Next Articles
Received:
2018-11-13
Revised:
2019-03-15
Accepted:
2018-12-11
Online:
2019-04-03
Published:
2019-04-03
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb18110045
[1] 张子龙, 王文全. 植物连作障碍的形成机制及其调控技术研究进展[J]. 生物学杂志, 2010, 27(5): 69-72. [2] Wu F Z, Wang X Z, Xue C Y. Effect of cinnamic acid on soil microbial characteristics in the cucumber rhizosphere[J]. European Journal of Soil Biology, 2009, 45(4): 356-362. [3] 郝慧荣, 李振方, 熊君, et al. 连作怀牛膝根际土壤微生物区系及酶活性的变化研究[J]. 中国生态农业学报, 2008, 16(2): 307-311. [4] 王曌. 连作对棉花生长生理效应及硫肥对连作调控效应的研究[D]. 河北农业大学, 2013. [5] 刘苹, 赵海军, 万书波, et al. 连作对花生根系分泌物化感作用的影响[J]. 中国生态农业学报, 2011, 19(3): 639-644. [6] 吴正锋, 成波, 王才斌, et al. 连作对花生幼苗生理特性及荚果产量的影响[J]. 花生学报, 2006, 35(1): 29-33. [7] 杜长玉, 赵华强, 李明琴. 大豆连作对植株形态和生理指标的影响[J]. 北方农业学报, 2003, (4): 14-15. [8] 卫玲, 樊云茜, 肖俊红, et al. 大豆连作障碍及其缓解措施研究[J]. 园艺与种苗, 2010, 30(2): 141-142. [9] 尹彦舒, 崔曼, 崔伟国, et al. 大蒜连作障碍形成机理的研究进展[J]. 生物资源, 2018, (2). [10] 陈海龙, 王生兰. 张掖市甘州区制种玉米连作的危害及治理措施[J]. 农业科技与信息, 2016, (10): 69-69. [11] 胡元森, 吴坤, 李翠香, et al. 酚酸物质对黄瓜幼苗及枯萎病菌菌丝生长的影响[J]. 生态学杂志, 2007, 26(11): 1738-1742. [12] 杨建霞, 范小峰, 刘建新. 温室黄瓜连作对根际微生物区系的影响[J]. 浙江农业科学, 2005, 1(6): 441-443. [13] 张继光, 申国明, 张久权, et al. 烟草连作障碍研究进展[J]. 中国烟草科学, 2011, 32(3): 95-99. [14] 王峰吉, 尤垂淮, 刘朝科, et al. 不同连作年限植烟土壤对烤烟生长发育及产质量的影响[J]. 福建农业学报, 2014, V29(5): 443-448. [15] 赵尊练, 史联联, 阎玉让, et al. 克服线辣椒连作障碍的施肥方案研究[J]. 干旱地区农业研究, 2006, 24(5): 77-80. [16] 甄文超, 曹克强, 代丽, et al. 连作草莓根系分泌物自毒作用的模拟研究[J]. 植物生态学报, 2004, 28(6): 828-832. [17] 黄春艳, 卜元卿, 单正军, et al. 西瓜连作病害机理及生物防治研究进展[J]. 生态学杂志, 2016, 35(6): 1670-1676. [18] 樊芳芳, 王劲松, 董二伟, et al. 连作对高粱生长及根区土壤环境的影响[J]. 中国土壤与肥料, 2016, (3): 127-133. [19] 丁自勉. 地黄[M]. 中国中医药出版社, 2001. [20] 王韶娟. 人参根系分泌物对植物生长的影响及参后地植物修复[D]. 吉林农业大学, 2008. [21] 胡幼军. 桃树忌连作[J]. 农家科技, 1996, (11): 19-19. [22] 崔勇. 马铃薯连作造成的影响及连作障碍防控技术[J]. 作物杂志, 2018, (2). [23] Hinsinger P, Plassard C, Jaillard B. Rhizosphere: A New Frontier for Soil Biogeochemistry[J]. Journal of Geochemical Exploration, 2006, 88(1): 210-213. [24] 滕应, 任文杰, 李振高, et al. 花生连作障碍发生机理研究进展[J]. 土壤, 2015, 47(2): 259-265. [25] 吴凤芝, 赵凤艳. 根系分泌物与连作障碍[J]. 东北农业大学学报, 2003, 34(1): 114-118. [26] 徐雪风, 回振龙, 李自龙, et al. 马铃薯连作障碍与土壤环境因子变化相关研究[J]. 干旱地区农业研究, 2015, 33(4): 16-23. [27] 司鲁俊. 设施蔬菜连作障碍分析及防控[J]. 农业科技通讯, 2018, (1): 249-251. [28] 吴凤芝, 赵凤艳, 谷思玉. 保护地黄瓜连作对土壤生物化学性质的影响[J]. 土壤与作物, 2002, 18(1): 20-22. [29] 王梓, 李勇, 丁万隆. 人参化感自毒作用与连作障碍机制研究进展[J]. 中国现代中药, 2017, 19(7): 1040-1044. [30] 吴凤芝, 刘德. 大棚蔬菜连作年限对土壤主要理化性状的影响[J]. 中国蔬菜, 1998, 1(4): 5-8. [31] Horton T R, Bruns T D. The molecular revolution in ectomycorrhizal ecology: peeking into the black‐box[J]. Molecular Ecology, 2010, 10(8): 1855-1871. [32] Ogram A. Soil molecular microbial ecology at age 20: methodological challenges for the future[J]. Soil Biology Biochemistry, 2000, 32(11): 1499-1504. [33] 沈志远, 王其传. 作物连作障碍发生原因及解决办法[J]. 生物学教学, 2002, 27(3): 39-39. [34] 陈龙池, 廖利平, 汪思龙, et al. 外源毒素对林地土壤养分的影响[J]. 生态学杂志, 2002, 21(1): 19-22. [35] 肖辉林, 彭少麟, 郑煜基, et al. 植物化感物质及化感潜力与土壤养分的相互影响[J]. 应用生态学报, 2006, 17(9): 1747-1750. [36] Han C M, Li C L, Ye S P, et al. Autotoxic effects of aqueous extracts of ginger on growth of ginger seedings and on antioxidant enzymes, membrane permeability and lipid peroxidation in leaves[J]. Allelopathy Journal, 2012, 30(2): 259-270. [37] 张淑香, 高子勤. 连作障碍与根际微生态研究Ⅱ.根系分泌物与酚酸物质[J]. 应用生态学报, 2000, 11(1): 153-157. [38] 张淑香, 高子勤. 连作障碍与根际微生态研究Ⅲ.土壤酚酸物质及其生物学效应[J]. 应用生态学报, 2000, 11(5): 741-744. [39] Chen S L, Zhou B L, Lin S S, et al. [Effects of cinnamic acid and vanillin on grafted eggplant root growth and physiological characteristics][J]. Chinese Journal of Applied Ecology, 2010, 21(6): 1446. [40] Huang Y Q, Han X R, Yang J F, et al. Autotoxicity of peanut and identification of phytotoxic substances in rhizosphere soil[J]. Allelopathy Journal, 2013, 31(2): 297-308. [41] Xia R, Xiaofeng H, Zhongfeng Z, et al. Isolation, Identification, and Autotoxicity Effect of Allelochemicals from Rhizosphere Soils of Flue-Cured Tobacco[J]. Journal of Agricultural Food Chemistry, 2015, 63(41): 8975. [42] Inderjit, Lambers H, Colmer T D. Soil microorganisms: an important determinant of allelopathic activity[J]. Plant Soil, 2005, 274(1/2): 227-236. [43] Kong C H, Chen L C, Xu X H, et al. Allelochemicals and Activities in a Replanted Chinese Fir (Cunninghamia lanceolata (Lamb.) Hook) Tree Ecosystem[J]. J Agric Food Chem, 2008, 56(24): 11734-11739. [44] Lipinska H, Harkot W. Allelopathic activity of grassland species[J]. Allelopathy Journal, 2007, 19(1): 3-36. [45] Rial C, Novaes P, Varela R M, et al. Phytotoxicity of cardoon (Cynara cardunculus) allelochemicals on standard target species and weeds[J]. Journal of Agricultural Food Chemistry, 2014, 62(28): 6699. [46] 李培栋, 王兴祥, 李奕林, et al. 连作花生土壤中酚酸类物质的检测及其对花生的化感作用[J]. 生态学报, 2010, 30(8): 2128-2134. [47] 刘苹, 赵海军, 唐朝辉, et al. 连作对不同抗性花生品种根系分泌物和土壤中化感物质含量的影响[J]. 中国油料作物学报, 2015, 37(4): 467-474. [48] 陈芸, 鲍丽芹, 王继莲. 4种化感物质对玉米种子萌发及幼苗生长的影响[J]. 种子, 2014, 33(7): 10-14. [49] Yong T, Cui Y, Li H, et al. Rhizospheric soil and root endogenous fungal diversity and composition in response to continuous Panax notoginseng cropping practices[J]. Microbiological Research, 2017, 194: 10-19. [50] Xiong W, Zhao Q, Zhao J, et al. Different continuous cropping spans significantly affect microbial community membership and structure in a vanilla-grown soil as revealed by deep pyrosequencing[J]. Microbial Ecology, 2015, 70(1): 209-218. [51] Urashima Y, Sonoda T, Fujita Y, et al. Application of PCR-Denaturing-Gradient Gel Electrophoresis (DGGE) Method to Examine Microbial Community Structure in Asparagus Fields with Growth Inhibition due to Continuous Cropping[J]. Microbes Environments, 2012, 27(1): 43-48. [52] Yim, Bunlong, Winkelmann, et al. Evaluation of apple replant problems based on different soil;disinfection treatments-links to soil microbial community structure?[J]. Plant Soil, 2013, 366(1-2): 617-631. [53] Hao W Y, Ren L X, Wei R, et al. Allelopathic effects of root exudates from watermelon and rice plants on Fusarium oxysporum f.sp. niveum[J]. Plant Soil, 2010, 336(1-2): 485-497. [54] Huang J. Effects of phenolic compounds of muskmelon root exudates on growth and pathogenic gene expression of Fusarium oxysporum f. sp. Melonis[J]. Allelopathy Journal, 2015, 35(2): 175-186. [55] 王兴祥, 张桃林, 戴传超. 连作花生土壤障碍原因及消除技术研究进展[J]. 土壤, 2010, 42(4): 505-512. [56] 徐文修, 罗明, 李大平, et al. 不同连作年限棉田土壤理化性质及微生物区系变化规律研究[J]. 干旱地区农业研究, 2014, 32(3): 134-138. [57] 刘晔, 姜瑛, 王国文, et al. 不同连作年限对植烟土壤理化性状及微生物区系的影响[J]. 中国农学通报, 2016, 32(13): 136-140. [58] 张兆波, 毛志泉, 朱树华. 6种酚酸类物质对平邑甜茶幼苗根系线粒体及抗氧化酶活性的影响[J]. 中国农业科学, 2011, 44(15): 3177-3184. [59] Landi L, Valori F, Ascher J, et al. Root exudate effects on the bacterial communities, CO2 evolution, nitrogen transformations and ATP content of rhizosphere and bulk soils[J]. Soil Biology Biochemistry, 2006, 38(3): 509-516. [60] Akiyama K, Matsuzaki K, Hayashi H. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi[J]. Nature, 2005, 435(7043): 824-7. [61] 董艳, 董坤, 郑毅, et al. 不同抗性蚕豆品种根系分泌物对枯萎病菌的化感作用及根系分泌物组分分析[J]. 中国生态农业学报, 2014, 22(3): 292-299. [62] Cheng F, Cheng Z H, Meng H W. Corrigendum: Transcriptomic insights into the allelopathic effects of the garlic allelochemical diallyl disulfide on tomato roots[J]. Scientific Reports, 2016, 6: 38902. [63] 付学鹏, 吴凤芝, 吴瑕, et al. 间套作改善作物矿质营养的机理研究进展[J]. 植物营养与肥料学报, 2016, 22(2): 525-535. [64] 秦舒浩, 曹莉, 张俊莲, et al. 轮作豆科植物对马铃薯连作田土壤速效养分及理化性质的影响[J]. 作物学报, 2014, 40(8): 1452-1458. [65] Li H, Zhang F, Rengel Z, et al. Rhizosphere properties in monocropping and intercropping systems between faba bean (Vicia faba L.) and maize (Zea mays L.) grown in a calcareous soil[J]. Crop Pasture Science, 2013, 64(10): 976-984. [66] Dissanayaka D M S B, Maruyama H, Masuda G, et al. Interspecific facilitation of P acquisition in intercropping of maize with white lupin in two contrasting soils as influenced by different rates and forms of P supply[J]. Plant Soil, 2015, 390(1-2): 223-236. [67] Zang H, Yang X, Feng X, et al. Rhizodeposition of nitrogen and carbon by mungbean (Vigna radiata L.) and its contribution to intercropped oats (Avena nuda L.)[J]. Plos One, 2015, 10(3): e0121132. [68] 吴凤芝, 周新刚. 不同作物间作对黄瓜病害及土壤微生物群落多样性的影响[J]. 土壤学报, 2009, 46(5): 899-906. [69] Zhou X, Yu G, Wua F. Effects of intercropping cucumber with onion or garlic on soil enzyme activities, microbial communities and cucumber yield[J]. European Journal of Soil Biology, 2011, 47(5): 279-287. [70] 庄敬华, 杨长成, 唐树戈, et al. 几种设施蔬菜根系浸提液对甜瓜的化感作用[J]. 种子, 2009, 28(11): 94-96. [71] 周志红, 骆世明. 番茄(Lycopersicon)的化感作用研究[J]. 应用生态学报, 1997, 8(4): 445-449. [72] Schutter M, Dick R. Shifts in substrate utilization potential and structure of soil microbial communities in response to carbon substrates[J]. Soil Biology Biochemistry, 2001, 33(11): 1481-1491. [73] 喻景权. 蔬菜生产中的化学他感作用问题及其研究[C]. 中国科协青年学术讨论会, 1998. [74] 孙文浩. 相生相克效应及其应用[J]. 植物生理学报, 1992, (2): 81-87. [75] 韦志扬, 覃泽林, 韦莉萍, et al. 不同砧木嫁接对西瓜抗生理性凋萎症的作用机理研究[J]. 南方农业学报, 2013, 44(5): 773-777. [76] 刘庆哲. 温室黄瓜与黑籽南瓜嫁接[J]. 北方园艺, 1992, (6): 61-61. [77] 廖道龙, 伍壮生, 邓长智. 不同野生茄子对紫长茄嫁接应用效果的研究[J]. 热带农业科学, 2015, 35(5): 9-12. [78] 孙令强, 耿广东, 王倩, et al. 设施蔬菜土壤次生盐渍化及其克服对策[J]. 蔬菜, 2004, (12): 22-23. [79] Sharp R G. A Review of the Applications of Chitin and Its Derivatives in Agriculture to Modify Plant-Microbial Interactions and Improve Crop Yields[J]. Agronomy, 2013, 3(4): 757-793. [80] 袁嫚嫚, 刘勤, 张少磊, et al. 太湖地区稻田绿肥固氮量及绿肥还田对水稻产量和稻田土壤氮素特征的影响[J]. 土壤学报, 2011, 48(4): 797-803. [81] 马超, 周静, 刘满强, et al. 秸秆促腐还田对土壤养分及活性有机碳的影响[J]. 土壤学报, 2013, 50(5): 915-921. [82] Turmel M S, Speratti A, Baudron F, et al. Crop residue management and soil health: A systems analysis[J]. Agricultural Systems, 2015, 134: 6-16. [83] 张红, 吕家珑, 曹莹菲, et al. 不同植物秸秆腐解特性与土壤微生物功能多样性研究[J]. 土壤学报, 2014, (4): 743-752. [84] 王笃超, 吴景贵, 李建明. 不同有机物料对连作大豆土壤养分含量及生物性状的影响[J]. 水土保持学报, 2017, 31(3): 258-262. [85] 王笃超, 吴景贵, 李建明. 不同有机物料对连作大豆根际土壤线虫的影响[J]. 土壤学报, 2018, 55(2): 490-502. [86] Aguilera J, Motavalli P P, Gonzales M A, et al. Initial and residual effects of organic and inorganic amendments on soil properties in a potato-based cropping system in the Bolivian Andean Highlands[J]. American Journal of Experimental Agriculture, 2012: 641-666. [87] Bandyopadhyay K K, Misra A K, Ghosh P K, et al. Effect of integrated use of farmyard manure and chemical fertilizers on soil physical properties and productivity of soybean[J]. Soil Tillage Research, 2010, 110(1): 115-125. [88] 陶磊, 褚贵新, 刘涛, et al. 有机肥替代部分化肥对长期连作棉田产量、土壤微生物数量及酶活性的影响[J]. 生态学报, 2014, 34(21): 6137-6146. [89] 李金鞠, 廖甜甜, 潘虹, et al. 土壤有益微生物在植物病害防治中的应用[J]. 湖北农业科学, 2011, 50(23): 4753-4757. [90] 高群, 孟宪志, 于洪飞. 连作障碍原因分析及防治途径研究[J]. 山东农业科学, 2006, (3): 60-63. [91] 朱伟杰, 王楠, 郁雪平, et al. 生防菌Pseudomonas fluorescens 2P24对甜瓜根围土壤微生物的影响[J]. 中国农业科学, 2010, 43(7): 1389-1396. [92] Zhou T, Chen D, Li C, et al. Isolation and characterization of Pseudomonas brassicacearum J12 as an antagonist against Ralstonia solanacearum and identification of its antimicrobial components[J]. Microbiological Research, 2012, 167(7): 388-394. [93] 张艳杰, 杨淑, 陈英化, et al. 玫瑰黄链霉菌防治番茄连作障碍及对土壤微生物区系的影响[J]. 西北农业学报, 2014, 23(8): 122-127. [94] 袁龙刚, 张军林. 辣椒连作障碍的主要原因及其对策[J]. 农学学报, 2006, (2): 32-33. [95] 冯红贤, 杨暹, 李欣允, et al. 蔬菜连作对土壤生物化学性质的影响[J]. 长江蔬菜, 2004, (11): 40-43. [96] 郝永娟, 魏军, 刘春艳, et al. 生物土壤添加剂对连作黄瓜防御酶系及酚类物质含量的影响[J]. 植物病理学报, 2009, 39(4): 444-448. [97] 孙雪婷, 李磊, 龙光强, et al. 三七连作障碍研究进展[J]. 生态学杂志, 2015, 34(3): 885-893. [98] Liang B Q, Lehmann J, Sohi S P, et al. Black carbon affects the cycling of non-black carbon in soil[J]. Organic Geochemistry, 2010, 41(2): 206-2132008. [99] 翁福军, 卢树昌. 生物炭在农业领域应用的研究进展与前景[J]. 北方园艺, 2015, (8): 199-203. [100] 谭磊. 生物炭缓解自毒物质对甜瓜和木霉菌的毒害作用及其对土壤微生物种群的影响[D]. 沈阳农业大学, 2017. [101] 阮弈平. 蔬菜连作障碍中自毒作用及其缓解措施研究[D]. 浙江大学, 2013. |
[1] | YAN Fangfang, KONG Chuixu, ZHANG Yingjie, MAO Min, JIAN Lianjun, WANG Rong. Biological Control of Tobacco Root-knot Nematode Disease by Penicillium purpurogenum K1 [J]. Chinese Agricultural Science Bulletin, 2022, 38(33): 103-108. |
[2] | CAI Yongzhan, WANG Ruibao, BAI Tao, LIU Youcai, HAN Xiaonv, WANG Bin, HUA Xiaobing, LI Cheng, MAO Minglin, ZI Wenlin. Control Effect of Three Bacillus subtilis Strains on Tobacco Powdery Mildew [J]. Chinese Agricultural Science Bulletin, 2022, 38(25): 125-129. |
[3] | HU Zhongliang, WANG Jianhe, XU Kui, SU Ying, CHEN Zhiwei, JIANG Yin. Effect of Different Insecticides on Field Control of Cnaphalocrocis medinalis: An Evaluation [J]. Chinese Agricultural Science Bulletin, 2022, 38(23): 116-120. |
[4] | LI Yu, QIN Jianfeng, LIU Yunhua, SUN Yingying, TANG Xiaodong. A Preliminary Study on Root Knot Nematode of Gynostemma pentaphyllum [J]. Chinese Agricultural Science Bulletin, 2022, 38(22): 110-114. |
[5] | REN Xuexiang, JING Maofeng, SU Xianyan, CHI Yu, CHEN Haoliang, ZHONG Yongzhi, YE Zhenghe. Repellent Effect of Rhizobium on Spodoptera frugiperda [J]. Chinese Agricultural Science Bulletin, 2022, 38(19): 128-132. |
[6] | CHEN Peihua, BAO Han, CHEN Peishou, SHEN Wankuan. Field Effect Evaluation of Healthy Seed Canes of Chewing Cane [J]. Chinese Agricultural Science Bulletin, 2022, 38(16): 1-5. |
[7] | MA Yue, ZHANG Kexin, WANG Fawu, ZHANG Qiangyan, ZHANG Yanlei, TAO Yan, LIU Huiping, LIU Changzhong. Effect of Tetranychus truncatus Feeding on Enzyme Activities of Solanum tuberosum [J]. Chinese Agricultural Science Bulletin, 2022, 38(16): 125-131. |
[8] | HU Xiangshun, LI Jingwen, PENG Jingfeng, ZHAO Huiyan, LIU Tongxian. Grain Aphid Sitobion miscanthi: Damage on Wheat Yield Components and Its Ecological Control [J]. Chinese Agricultural Science Bulletin, 2022, 38(12): 110-118. |
[9] | FENG Yongxin, TAN Hongxiang, GUAN Hui, JIN Yanfeng, XU Wei, WANG Jie. The Passivation Effect of Yiduling on TMV in Tobacco Seedling Stage [J]. Chinese Agricultural Science Bulletin, 2022, 38(10): 112-120. |
[10] | PU Yongyu, BAO Lingfeng, HE Xiang, LIU Rui, ZHANG Qing, SHI Zhufeng, HE Yonghong, YANG Peiwen. Screening, Identification and Control Efficacy of Antagonistic Bacteria Against Ralstonia solanacearum and Phytophthora parasitica [J]. Chinese Agricultural Science Bulletin, 2022, 38(7): 116-123. |
[11] | SHEN Xiuxian, TIAN Tai’an, LIU Jianfeng, YU Xiaofei, DONG Xiangli, LI Zhimo, YANG Maofa. The 5th Instar Nymph of Picromerus lewisi: Predation Responses to Different Instars of Mythimna seperata [J]. Chinese Agricultural Science Bulletin, 2022, 38(3): 116-120. |
[12] | CHEN Qingqing, WANG Chunlin, ZHANG Haishan, ZHANG Aifang. Rice Blast and Bacterial Blight of Regional Trial Rice Varieties in Anhui Province: Resistance Analysis [J]. Chinese Agricultural Science Bulletin, 2022, 38(3): 134-139. |
[13] | FU Huijuan, LI Xingyue, YI Jun, LI Qiyong, XU Bingzhi, CHEN Youhua, LUO Congcong, ZHANG Hong. Major Biological Disasters of Dry Farming in Sichuan Hilly Areas: Control Strategy and Technology [J]. Chinese Agricultural Science Bulletin, 2022, 38(3): 140-147. |
[14] | Chai Pengpei, Han Suoyi, Cui Mengjie, Guo Junjia, Huang Bingyan, Dong Wenzhao, Zhang Xinyou. Physiological and Biochemical Mechanisms of Anti-Aspergillus flavus in Peanuts: A Review [J]. Chinese Agricultural Science Bulletin, 2021, 37(30): 89-97. |
[15] | Liu Xia, Zhang Zhe, Qian Hongjie, Zhang Lijie, Yang Yanli. Cloning and Expression Analysis of the Papain-like Cysteine Proteases Subfamily Gene C1A-PH-SCH1 of Phytophthora Infestans [J]. Chinese Agricultural Science Bulletin, 2021, 37(29): 13-19. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||