Chinese Agricultural Science Bulletin ›› 2020, Vol. 36 ›› Issue (21): 33-39.doi: 10.11924/j.issn.1000-6850.casb20200200087
Previous Articles Next Articles
Xue Lin, Sun Yutong, Sheng Mingyue, Ni Hongtao()
Received:
2020-02-05
Revised:
2020-03-09
Online:
2020-07-25
Published:
2020-07-21
Contact:
Ni Hongtao
E-mail:1303589054@qq.com
CLC Number:
Xue Lin, Sun Yutong, Sheng Mingyue, Ni Hongtao. Nanomaterials: Effects on Seed Germination and Growth and Development of Crop[J]. Chinese Agricultural Science Bulletin, 2020, 36(21): 33-39.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb20200200087
[1] | 孙长娇, 崔海信, 王琰, 等. 纳米材料与技术在农业上的应用研究进展[J]. 中国农业科技导报, 2016,18(01):18-25. |
[2] |
Safiuddin M, Gonzalez M, Cao J, et al. State-of-the-art report on use of nano-materials in concrete[J]. International Journal of Pavement Engineering, 2014,15(10):940-949.
doi: 10.1080/10298436.2014.893327 URL |
[3] | Melanie K. Nanopesticides and Nanofertilizers: Emerging Contaminants or Opportunities for Risk Mitigation[J]. Frontiers in Chemistry, 2015,3(64):1-6. |
[4] | 刘家丰, 倪洪涛. 纳米技术在种子生产、加工与处理中的应用[J]. 中国农学通报, 2018,34(17):19-23. |
[5] | 汪玉洁, 陈日远, 刘厚诚, 等. 纳米材料在农业上的应用及其对植物生长和发育的影响[J]. 植物生理学报, 2017,53(06):933-942. |
[6] | 杜俊杰, 李娜, 吴建虎. 不同纳米材料对小麦种子萌发的影响[J]. 安徽农业科学, 2018,46(13):38-40. |
[7] |
Xiangang H, Qixing. Novel hydrated graphene ribbon unexpectedly promotes aged seed germination and root differentiation[J]. Scientific reports, 2014,4:3782.
doi: 10.1038/srep03782 URL pmid: 24445438 |
[8] |
Andersen C P, King G, Plocher M, et al. Germination and early plant development of ten plant species exposed to titanium dioxide and cerium oxide nanoparticles[J]. Environmental Toxicology and Chemistry, 2016,35(9):2223-2229.
doi: 10.1002/etc.3374 URL pmid: 26773270 |
[9] | Hojjats S. Impact of silver nanoparticles on germinated fenugreek seed[J]. International Journal of Agricultural and Crop Sciences, 2015,8(4):627-630. |
[10] | Savithramma N, Ankanna S, Bhumi G. Effect of Nanoparticles on Seed Germination and Seedling Growth of Boswellia Ovalifoliolata -an Endemic and Endangered Medicinal Tree Taxon[J]. Nano Vision, 2012,2(1-3):61-68. |
[11] |
Shah V, Belozerova I. Influence of Metal Nanoparticles on the Soil Microbial Community and Germination of Lettuce Seeds[J]. Water Air and Soil Pollution, 2009,197(1-4):143-148.
doi: 10.1007/s11270-008-9797-6 URL |
[12] |
Liu R, Zhang H, Lal R. Effects of Stabilized Nanoparticles of Copper, Zinc, Manganese, and Iron Oxides in Low Concentrations on Lettuce (Lactuca sativa) Seed Germination: Nanotoxicants or Nanonutrients[J]. Water Air and Soil Pollution, 2016,227(1):1-14.
doi: 10.1007/s11270-015-2689-7 URL |
[13] | Sharifi-Rad J, Karimi J, Mohsenzadeh S, et al. Evaluating SiO2 Nanoparticles effects on developmental characteristic and photosynthetic pigment contents of Zea mays L.[J]. Bulletin of Environment, Pharmacology and Life Sciences, 2015,3(6):194-201. |
[14] | Roohizadeh G, Majd A, Arbabian S. The effect of sodium silicate and silica nanoparticles on seed germination and growth in the Vicia faba L.[J]. Tropical plant research, 2015,2(2):85-89. |
[15] | Lu M D, Silva D R, Peralta E K, et al. Effects of nanosilica powder from rice hull ash on seed germination of tomato (Lycopersicon esculentum)[J]. Philippine e-Journal for Applied Research and Development, 2015,5:11-22. |
[16] |
Siddiqui M H, Al-Whaibi M H, Faisal M, et al. Nano-silicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L.[J]. Environmental Toxicology and Chemistry, 2014,33(11):2429-2437.
doi: 10.1002/etc.2697 URL |
[17] |
Janmohammadi M, Sabaghnia N. Effect of pre-sowing seed treatments with silicon nanoparticles on germinability of sunflower (Helianthus annuus)[J]. Botanica Lithuanica, 2015,21(1):13-21.
doi: 10.1515/botlit-2015-0002 URL |
[18] | KhalakiA M A, Ghorbani A, Moameri M. Effects of silica and silver nanoparticles on seed germination traits of Thymus kotschyanus in laboratory conditions[J]. Journal of Rangeland Science, 2016,6(3):221-231. |
[19] |
Azimi R, Borzelabad M J, Feizi H, et al. Interaction of SiO2 nanoparticles with seed prechilling on germination and early seedling growth of tall wheatgrass (Agropyron Elongatum L.)[J]. Polish Journal of Chemical Technology, 2014,16(3):25-29.
doi: 10.2478/pjct-2014-0045 URL |
[20] | Alsaeedi A, El-Ramady H, Alshaal T, et al. Enhancing seed germination and seedlings development of common bean (Phaseolus vulgaris) by SiO2 nanoparticles[J]. Egypt Journal of Soil Science, 2017,57(4):407-415. |
[21] |
Alsaeedi A H, El-Ramady H, Alshaal T, et al. Engineered silica nanoparticles alleviate the detrimental effects of Na + stress on germination and growth of common bean (Phaseolus vulgaris) [J]. Environmental Science and Pollution Research, 2017,24(27):21917-21928.
doi: 10.1007/s11356-017-9847-y URL pmid: 28780690 |
[22] | Ngo Q B, Dao T H, Nguyen H C, et al. Effects of nanocrystalline powders (Fe Co and Cu) on the germination, growth, crop yield and product quality of soybean (Vietnamese species DT-51)[J]. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2014,5(1):15-16. |
[23] |
Siddiqui M H, Alwhaibi M H. Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill.)[J]. Saudi Journal of Biological Sciences, 2014,21(1):13-17.
doi: 10.1016/j.sjbs.2013.04.005 URL pmid: 24596495 |
[24] |
Song U, Jun H, Waldman B, et al. Functional analyses of nanoparticle toxicity: a Comparative study of the effects of TiO2 and Ag on tomatoes (Lycopersicon esculentm)[J]. Ecotoxicology Environmental Safety, 2013,93(2):60-67.
doi: 10.1016/j.ecoenv.2013.03.033 URL |
[25] |
Kim J H, Oh Y, Yoon H, et al. Iron nanoparticle-induced activation of plasma membrane H+-ATPase promotes stomatal opening in Arabidopsis thaliana[J]. Environmental Science Technology, 2015,49(2):1113-1139.
doi: 10.1021/es504375t URL pmid: 25496563 |
[26] |
Dehkourdi E H, Mosavi M. Effect of anatase nanoparticles (TiO2) on parsley seed germination (Petroselinum crispum) in vitro[J]. Biological Trace Element Research, 2013,155(2):283-286.
doi: 10.1007/s12011-013-9788-3 URL |
[27] |
Song U, Shin M, Lee G, et al. Functional analysis of TiO2 nanoparticle toxicity in three plant species[J]. Biological Trace Element Research, 2013,155(1):93-103.
doi: 10.1007/s12011-013-9765-x URL |
[28] |
Larue C, Veronesi G, Flank A M, et al. Comparative uptake and impact of TiO2 nanoparticles in wheat and rapeseed[J]. Journal Toxicology Environmental Health Part A, 2012,75(13-15):722-734.
doi: 10.1080/15287394.2012.689800 URL |
[29] |
Feizi H, Moghaddam P R, Shahtahmassebi N, et al. Impact of bulk and nanosized titanium dioxide (TiO2) on wheat seed germination and seedling growth[J]. Biological Trace Element Research, 2012,146(1):101-106.
doi: 10.1007/s12011-011-9222-7 URL |
[30] |
Antisari L V, Carbone S, Gatti A, et al. Uptake and translocation of metals and nutrients in tomato grown in soil polluted with metal oxide(CeO2, Fe3O4, SnO2, TiO2) or metallic (Ag, Co Ni) engineered nanoparticles[J]. Environmental Science and Pollution Research, 2015,22(3):1841-1853.
doi: 10.1007/s11356-014-3509-0 URL pmid: 25189804 |
[31] |
Khodakovskaya M, Dervishi E, Mahmood M, et al. Retraction Notice for Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth[J]. ACS Nano, 2009,3(10):3221-3227.
doi: 10.1021/nn900887m URL pmid: 19772305 |
[32] |
Lahiani M H, Dervishi E, Chen J, et al. Impact of carbon nanotube exposure to seeds of valuable crops[J]. ACS Applied Materials& Interfaces, 2013,5(16):7965-7973.
doi: 10.1021/am402052x URL pmid: 23834323 |
[33] | 赖钰. 不同用量纳米材料对生菜种子发芽的影响[J]. 蔬菜, 2019(4):10-14. |
[34] |
Mondal A, Basu R, Das S, et al. Beneficial role of carbon nanotubes on mustard plant growth: an agricultural prospect[J]. Journal of Nanoparticle Research, 2011,13(10):4519-4528.
doi: 10.1007/s11051-011-0406-z URL |
[35] |
Hao Y, Yu F, Lv R, et al. Carbon Nanotubes Filled with Different Ferromagnetic Alloys Affect the Growth and Development of Rice Seedlings by Changing the C: N Ratio and Plant Hormones Concentrations[J]. PLoS One, 2016,11(6):e0157264.
doi: 10.1371/journal.pone.0157264 URL pmid: 27284692 |
[36] | 乔俊, 赵建国, 解谦, 等. 纳米炭材料对作物生长影响的研究进展[J]. 农业工程学报, 2017,33(2):170-178. |
[37] |
Thiruvengadam M, Gurunathan S, Chung I M, et al. Physiological, metabolic, and transcriptional effects of biologically-synthesized silver nanoparticles in turnip (Brassica rapa ssp. rapa L.)[J]. Protoplasma, 2015,252(4):1031-1046.
doi: 10.1007/s00709-014-0738-5 URL pmid: 25471476 |
[38] |
Thuesombat P, Hannongbua S, Akasit S, et al. Effect of silver nanoparticles on rice (Oryza sativa L cv. KDML105)seed germination and seedling growth[J]. Ecotoxicology and Environmental Safety, 2014,104(5):302-309.
doi: 10.1016/j.ecoenv.2014.03.022 URL |
[39] |
El-Temsah Y S, Joner E J. Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil[J]. Environmental Toxicology, 2012,27(1):42-49.
doi: 10.1002/tox.20610 URL |
[40] |
Yasur J, Rani P U. Environmental effects of nanosilver: impact on castor seed germination seedling growth, and plant physiology[J]. Environmental Science and Pollution Research, 2013,20(12):8636-8648.
doi: 10.1007/s11356-013-1798-3 URL |
[41] | Gruyer N, Dorais M, Bastien C, et al. Interaction between silver nanoparticles and plant growth[J]. Acta Horticulturae, 2013,1037(2):795-800. |
[42] |
Karunakaran G, Surivaprabha R, Rajendran V, et al. Influence of ZrO2, SiO2, Al2O3 and TiO2 nanoparticles on maize seed germination under different growth conditions[J]. IET Nanobiotechnology, 2016,10(4):171-177.
doi: 10.1049/iet-nbt.2015.0007 URL pmid: 27463785 |
[43] | Wu S G, Huang L, Head J, et al. Electrospray facilitates the germination of plant seeds[J]. Aerosol Air Quality Resrarch, 2014,14(3):632-641. |
[44] |
Moon Y S, Park E S, Kim T O, et al. SELDI-TOF MS-based discovery of a biomarker in Cucumis sativus seeds exposed to CuO nanoparticles[J]. Environmental Toxicology and Pharmacology, 2014,38(3):922-931.
doi: 10.1016/j.etap.2014.10.002 URL |
[45] |
Costa M V J D, Sharma P K. Effect of copper oxide nanoparticles on growth, morphology, photosynjournal, and antioxidant response in Oryza sativa[J]. Photosynthetica, 2016,54(1):110-119.
doi: 10.1007/s11099-015-0167-5 URL |
[46] | Boonyanitipong P, Kositsup B, Kumar P, et al. Toxicity of ZnO and TiO2 nanoparticles on germinating rice seed[J]. International Journal of Bioscience Bioengineering, 2011,1:282-285. |
[47] |
Zhang R, Zhang H, Tu C, et al. Phytotoxicity of ZnO nanoparticles and the released Zn(II) ion to corn (Zea mays L.) and cucumber (Cucumis sativus L.) during germination[J]. Environmental Science and Pollution Research, 2015,22(14):11109-11117.
doi: 10.1007/s11356-015-4325-x URL pmid: 25794580 |
[48] |
Lin D, Xing B. Phytotoxicity of nanoparticles: inhibition of seed germination and root growth[J]. Environmental Pollution, 2007,150(2):243-250.
doi: 10.1016/j.envpol.2007.01.016 URL pmid: 17374428 |
[49] |
Josko I, Oleszczuk P. Influence of soil type and environmental conditions on ZnO: TiO2 and Ni nanoparticles phytotoxicity[J]. Chemosphere, 2013,92(1):91-99.
doi: 10.1016/j.chemosphere.2013.02.048 URL |
[50] | Xiang L, Zhao H M, Li Y W, et al. Effects of the size and morphology of zinc oxide nanoparticles on the germination of Chinese cabbage seeds[J]. Environmental Science and Pollution Research, 2017,35(3):434-445. |
[51] |
Tripathi S, Sarkar S. Influence of water soluble carbon dots on the growth of wheat plant[J]. Applied Nanoscience, 2015,5(5):. 609-616.
doi: 10.1007/s13204-014-0355-9 URL |
[52] | Suriyaprabha R, Karunakaran G, Yuvakkumar R, et al. Growth and physiological responses of maize (Zea mays L.) to porous silica nanoparticles in soil[J]. Journal of Nanoparticle Research, 2012,14(12):1-14. |
[53] | Mahmoodzadeh H, M.Nabavi, H.Kashefi. Effect of Nanoscale Titanium Dioxide Particles on the Germination and Growth of Canola (Brassica napus)[J]. Journal of Ornamental and Horticultural Plants, 2013,3:25-32. |
[54] |
Singh P, Singh R, Borthakur A, et al. Effect of nanoscale TiO2-activated carbon composite on Solanum lycopersicum (L.) and Vigna radiata (L.) seeds germination[J]. Energy Ecology and Environment, 2016,1(3):131-140.
doi: 10.1007/s40974-016-0009-8 URL |
[55] | Pavani K V, Divya V, Veena I, et al. Influence of bioengineered zinc nanoparticles and zinc metal on Cicer arietinum seedlings growth[J]. Asian Journal Agriculture Biology, 2014,2(4):216-223. |
[56] |
Dhoke S K, Mahajan P, Kamble R, et al. Effect of nanoparticles suspension on the growth of mung (Vigna radiata) seedlings by foliar spray method[J]. Nanotechnology, 2013,3(e1):1-5.
doi: 10.1088/0957-4484/3/1/001 URL |
[57] |
Wang Q, Ebbs S D, Chen Y, et al. Trans-generational impact of cerium oxide nanoparticles on tomato plants[J]. Metallomics, 2013,5(6):753-759.
doi: 10.1039/c3mt00033h URL |
[58] |
Zhang W, Ebbs S D, Musante C, et al. Uptake and accumulation of bulk and nano-sized cerium oxide particles and ionic cerium by radish (Raphanus sativus L.)[J]. Journal Agriculture Food Chem, 2015,63(2):382-390.
doi: 10.1021/jf5052442 URL |
[59] | Mahmoodzadeh H, Aghili R, Nabavi M. Physiological effects of TiO2 nanoparticles on wheat (Triticum aestivum)[J]. Technology Journal Engineering Applications Sciences, 2013,2:1365-1370. |
[60] |
Nair P M G, Chung I M. A mechanistic study on the toxic effect of copper oxide nanoparticles in soybean (Glycine max L.) root development and lignification of root cells[J]. Biological Trace Element Research, 2014,162(1-3):342-352.
doi: 10.1007/s12011-014-0106-5 URL |
[61] | Dimkpa C O, Mclean J E, Latta D E, et al. CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat[J]. Journal Nanoparticles Research, 2012,14(9):1-15. |
[62] |
Rizwan M, Ali S, Qayyum M F, et al. Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: A critical review[J]. Journal of Hazardous Materials, 2017,322:2-16.
doi: 10.1016/j.jhazmat.2016.05.061 URL pmid: 27267650 |
[63] | 吴文林, 毛艳辉, 梁玉霞, 等. 纳米材料对辣椒种子萌发的作用参数[J]. 黑龙江农业科学, 2012(2):54-56. |
[64] |
Zhang M, Gao B, Chen J J, et al. Effect of graphene on seed germination and seedling growth[J]. Journal of Nanoparticle Research, 2015,17(2):78.
doi: 10.1007/s11051-015-2885-9 URL |
[65] |
Khodakovskaya M V, De Silva K, Biris A S, et al. Carbon nanotubes induce growth enhancement of Tobacco Cells[J]. ACS Nano, 2012,6(3):2128-2135.
doi: 10.1021/nn204643g URL pmid: 22360840 |
[66] |
Yuvakkumar R, Elango V, Rajendran V, et al. Influence of nanosilica powder on the growth of maize crop (Zea Mays L.)[J]. International Journal of Green Nanotechnology, 2011,3(3):180-190.
doi: 10.1080/19430892.2011.628581 URL |
[67] | Fraceto L F, Grillo R, De Medeiros G A, et al. Nanotechnology in Agriculture: which innovation potential does it have[J]. Front Environ Science, 2016,4(20):1-5. |
[68] |
Chen R, Zhang C, Zhao Y, et al. Foliar application with nano-silicon reduced cadmium accumulation in grains by inhibiting cadmium translocation in rice plants[J]. Environmental Science and Pollution Research, 2018,25(3):2361-2368.
doi: 10.1007/s11356-017-0681-z URL pmid: 29124638 |
[69] | 苏蔚, 李贵莲, 陈日远, 等. 纳米胶片对水培菜不同生长期NPK吸收转运的影响[J]. 贵州农业科学, 2015,43(8):138-140. |
[70] | 王佳奇. 纳米碳对玉米生长及养分吸收的影响[D]. 哈尔滨:东北农业大学, 2013. |
[71] |
王丽华, 王发园, 景新新, 等. 纳米氧化锌和接种丛枝菌根真菌对大豆生长及营养吸收的影响[J]. 生态学报, 2015,35(15):5254-5261.
doi: 10.5846/stxb201401260191 URL |
[72] |
Tripathi D K, Singh V P, Prasad S M, et al. Silicon nanoparticles (SiNp) alleviate chromium (VI) phytotoxicity in Pisum sativum (L.) seedlings[J]. Plant Physiology and Biochemistry, 2015,96:189-198.
doi: 10.1016/j.plaphy.2015.07.026 URL pmid: 26298805 |
[73] | 王世华. 叶面喷施纳米硅增强水稻抗重金属毒害机理研究[D]. 南京:南京农业大学, 2017. |
[74] |
Ma L L, Liu C, Qu C X, et al. Rubisco activase mRNA expression in spinach: modulation by nanoanatase treatment[J]. Biol Trace Elem Res, 2008,122(2):168-178.
doi: 10.1007/s12011-007-8069-4 URL |
[75] | 施夏明, 高超, 乔宁宁, 等. 纳米金对绿豆(Phaseolus radiates)种子萌发和幼苗生长的影响及其生理机制[J]. 生态学杂志, 2019,38(4):945-952. |
[76] | 李威, 黄进, 李其昌, 等. 纳米颗粒对植物光合作用影响机制的研究[J]. 生物学杂志, 2015,32(5):63-69. |
[77] | 徐立娜, 王震宇, 赵建. CuO纳米颗粒对拟南芥叶片生长及生理特性的影响[J]. 植物生理学报, 2015,51(6):955-961. |
[78] |
Panova G G, Ktitorova I N, Skobeleva O V, et al. Impact of polyhydroxy fullerene (fullerol or fullerenol) on growth and biophysical characteristics of barley seedlings in favourable and stressful conditions[J]. Plant Growth Regulation, 2015,79(3):309-317.
doi: 10.1007/s10725-015-0135-x URL |
[79] |
Derbalah A, Shenashen M, Hamza A, et al. Antifungal activity of fabricated mesoporous silica nanoparticles against early blight of tomato[J]. Egyptian Journal of Basic and Applied Sciences, 2018,5:145-150.
doi: 10.1016/j.ejbas.2018.05.002 URL |
[80] |
Suriyaprabha R, Karunakaran G, Kavitha K, et al. Application of silica nanoparticles in maize to enhance fungal resistance[J]. IET Nanobiotechnology, 2014,8(3):133-137.
doi: 10.1049/iet-nbt.2013.0004 URL |
[81] | 孙德权, 陆新华, 胡玉林, 等. 纳米硅材料对植物生长发育影响的研究进展[J]. 热带作物学报, 2019,40(11):2300-2311. |
[82] |
Keller C, Rizwan M, Davidian J-C, et al. Effect of silicon on wheat seedlings (Triticum turgidum L.)grown in hydroponics and exposed to 0 to 30 µM Cu[J]. Planta, 2015,241(4).
doi: 10.1007/s00425-014-2221-0 URL pmid: 25502480 |
[83] | Tantawy, Salama Y M, El-Nemr M A, et al. Nano silicon application improves salinity tolerance of sweet pepper plants[J]. International Journal of Chemistry Technology Research, 2015,8(10):11-17. |
[84] |
Alsaeedia A, El-Ramadyb H, Alshaalb T, et al. Exogenous nanosilica improves germination and growth of cucumber by maintaining K+/Na+ ratio under elevated Na+ stress[J]. Plant Physiology and Biochemistry, 2018,125:164-171.
doi: 10.1016/j.plaphy.2018.02.006 URL pmid: 29471211 |
[85] |
Alsaeedia A, El-Ramady H, Alshaal T, et al. Silica nanoparticles boost growth and productivity of cucumber under water deficit and salinity stresses by balancing nutrients uptake[J]. Plant Physiology and Biochemistry, 2019,139:1-10.
doi: 10.1016/j.plaphy.2019.03.008 URL pmid: 30870715 |
[86] | 张聪聪, 张静怡, 李杨, 等. 纳米硅喷施对玉米抗旱性和抗虫性的影响[J]. 河北师范大学学报:自然科学版, 2017(4):78-83. |
[87] |
Hussain A, Rizwan M, Ali Q, et al. Seed priming with silicon nanoparticles improved the biomass and yield while reduced the oxidative stress and cadmium concentration in wheat grains[J]. Environmental Science and Pollution Research, 2019,26(8):7579-7588.
doi: 10.1007/s11356-019-04210-5 URL pmid: 30661166 |
[88] |
Wang S, Wang F, Gao S, et al. Heavy metal accumulation in different rice cultivars as influenced by foliar application of nano-silicon[J]. Water Air and Soil Pollution, 2016,227(7):228.
doi: 10.1007/s11270-016-2928-6 URL |
[89] | 高梦迪, 盛茂银, 傅籍锋. 纳米材料对植物生长发育的影响[J]. 生物技术通报, 2019,35(7):172-180. |
[90] |
Kouhi S M M, Lahouti M, Ganjeali A, et al. Long-term exposure of rapeseed (Brassica napus L.) to ZnO nanoparticles: anatomical and ultrastructural responses[J]. Environmental Science and Pollution Research, 2015,22(14):10733-10743.
doi: 10.1007/s11356-015-4306-0 URL pmid: 25752639 |
[91] |
Vannini C, Domingo G, Onelli E, et al. Morphological and proteomic responses of Eruca sativa exposed to silver nanoparticles or silver nitrate[J]. PLoS One, 2013,8(7):e68752.
doi: 10.1371/journal.pone.0068752 URL pmid: 23874747 |
[92] | Lee S, Chung H, Kim S, et al. The genotoxic effect of ZnO and CuO nanoparticles on early growth of buckwheat, Fagopyrum esculentum[J]. Water Air and Soil Pollution, 2013,224(9):1-11. |
[93] | 倪洪涛, 张文彬, 丁广洲. 纳米材料对植物基因表达的影响及遗传毒性[J]. 中国农学通报, 2019,35(12):137-143. |
[94] |
Ma Y, He X, Zhang P, et al. Phytotoxicity and biotransformation of La2o3nanoparticles in a terrestrial plant cucumber (Cucumis sativus)[J]. Nanotoxicology, 2011,5(4):743-753.
doi: 10.3109/17435390.2010.545487 URL pmid: 21261455 |
[95] |
Nair P M G, Chung I M. Impact of copper oxide nanoparticles exposure on Arabidopsis thaliana growth, root system development, root lignificaion, and molecular level changes[J]. Environmental Science and Pollution Research, 2014,21(22):12709-12722
doi: 10.1007/s11356-014-3210-3 URL |
[96] |
Singh S, Vishwakarma K, Singh S, et al. Understanding the plant and nanoparticle interface at transcriptomic and proteomic level: A concentric overview[J]. Plant Gene, 2017,11:265-272.
doi: 10.1016/j.plgene.2017.03.006 URL |
[97] | 王震宇, 赵建, 李娜, 等. 人工纳米颗粒对水生生物的毒性效应及其机制研究进展[J]. 环境科学, 2010,31(06):1409-1418. |
[1] | WANG Sizhi, GUAN Wenling, HAO Xiaohan, SONG Jie. Study on Germination Characteristics of Gaultheria procumbens Seeds [J]. Chinese Agricultural Science Bulletin, 2023, 39(1): 77-84. |
[2] | SUN Ge, JIE Weiguang, HU Wei, ZHANG Yingzhi, QIAO Wei, WEI Lina, JIANG Yitong, BAI Li. Effects of Mycorrhizal Fungi and Mycorrhizal Helper Bacteria on Crop Development: A Review [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 88-92. |
[3] | DENG Yushuai, WANG Yuguang, YU Lihua, GENG Gui. Effects of Waterlogging Stress on Growth and Photosynthetic Characteristics of Sugar Beet Seedlings Under Different Soil Salinity and Alkalinity [J]. Chinese Agricultural Science Bulletin, 2022, 38(7): 18-23. |
[4] | XU Xinyang, ZHANG Yuejian, SHEN Jia, SHOU Weisong. Methods for Breaking Seed Dormancy of Thick-skinned Muskmelon ‘Cuixue 5’ [J]. Chinese Agricultural Science Bulletin, 2022, 38(7): 41-44. |
[5] | WANG Zhiqiang, YANG Jianfeng, SHI Tianchi. Copper Content Characteristics of Main Grain Crops and Their Influencing Factors in Shizuishan of Ningxia [J]. Chinese Agricultural Science Bulletin, 2022, 38(32): 45-54. |
[6] | MA Yuemei, WANG Rongdang. Indexation Measurement of the Advantage of Main Grain Crops in Yunnan Province Based on the Comparative Advantage Theory [J]. Chinese Agricultural Science Bulletin, 2022, 38(30): 141-150. |
[7] | DONG Yinzhuang, WANG Gang, YU Lihua, GENG Gui. Effects of Ferrous Stress on Accumulation of Mineral Elements in Sugar Beet Seedlings [J]. Chinese Agricultural Science Bulletin, 2022, 38(3): 11-16. |
[8] | ZHANG Huimin, BAO Guangling, ZHOU Xiaotian, GAO Linlin, HU Hongxiang, MA Youhua. Safety Assessment of Heavy Metals in Specific Crops of Strictly Controlled Farmland [J]. Chinese Agricultural Science Bulletin, 2022, 38(3): 52-58. |
[9] | CHE Ke, ZHANG Moucao, ZHANG Junlin, ZHANG Hongni. Climatic Resource and Its Impact on Spring Maize in Qingyang City: Analysis Based on Sowing by Stages [J]. Chinese Agricultural Science Bulletin, 2022, 38(24): 80-85. |
[10] | HUANG Yali, MA Fengyun, WANG Xia, HAO Jun, DU Zhenyu, LIU Fangchun, SHI Qun, MA Bingyao. Effects of Drip Irrigation Amount on the Growth of Walnut Seedlings [J]. Chinese Agricultural Science Bulletin, 2022, 38(22): 62-68. |
[11] | GAO Zhongchao, SUN Lei, WANG Lihua, DU Chunying, ZHANG Liguo, ZHANG Jiuming, WANG Wei, GU Wei. Effects of Different Contents of Cd2+ in Soil on Growth and Development of Hemp and Soybean Seedlings [J]. Chinese Agricultural Science Bulletin, 2022, 38(22): 89-92. |
[12] | WANG Chen, ZHANG Juping, DING Han. Plant Growth and Development and Response to Adversity Stress Regulated by miR172: A Review [J]. Chinese Agricultural Science Bulletin, 2022, 38(17): 27-34. |
[13] | SUN Yin, HAO Jun, FANG Yifu, ZHANG Qian, JIANG Nannan. Mutagenic Effect of 60Co-γ on Tissue Culture Seedlings of Paphiopedilum [J]. Chinese Agricultural Science Bulletin, 2022, 38(15): 45-52. |
[14] | FANG Xueliang, FU Ming, CHEN Zheng, BAI Yunxiu, HE Ying, ZENG Hanlai. 5-Azacytidine Regulating Plant Gene Expression: Research Progress and Application Prospect [J]. Chinese Agricultural Science Bulletin, 2022, 38(13): 30-35. |
[15] | LI Huaide, CUI Tongxia, FAN Chongxiu, YAO Youxu, HUI Heping. Planting Density and Growth Years of Scutellaria baicalensis Georgi: Effects on Growth, Yield and Planting Benefit [J]. Chinese Agricultural Science Bulletin, 2022, 38(12): 41-46. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||