Chinese Agricultural Science Bulletin ›› 2020, Vol. 36 ›› Issue (24): 72-77.doi: 10.11924/j.issn.1000-6850.casb20190700387
Special Issue: 生物技术; 资源与环境; 农业生态
Previous Articles Next Articles
Received:
2019-07-06
Revised:
2019-11-04
Online:
2020-08-25
Published:
2020-08-20
Contact:
Wang Qinggui
E-mail:869027611@qq.com;qgwang1970@163.com
CLC Number:
Wang Lei, Wang Qinggui. Soil Ecoenzymatic Stoichiometry Characteristics: Natural Influencing Factors and Their Responses to Nitrogen Deposition[J]. Chinese Agricultural Science Bulletin, 2020, 36(24): 72-77.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb20190700387
[1] | Matson P, Lohse K A, Hall S J. The globalization of nitrogen deposition: consequences for terrestrial ecosystems[J]. AMBIO: A Journal of the Human Environment, 2002,31(2):113-120. |
[2] | Galloway J N, Cowling E B. Reactive nitrogen and the world: 200 years of change[J]. AMBIO:A Journal of the Human Environment, 2002,31(2):64-72. |
[3] |
Luo L, Meng H, Gu J D. Microbial extracellular enzymes in biogeochemical cycling of ecosystems[J]. Journal of environmental management, 2017,197:539-549.
doi: 10.1016/j.jenvman.2017.04.023 URL pmid: 28419976 |
[4] | Elser J J, O'brien W J, Dobberfuhl D R, et al. The evolution of ecosystem processes: growth rate and elemental stoichiometry of a key herbivore in temperate and arctic habitats[J]. Journal of Evolutionary Biology, 2000,13(5):845-853. |
[5] | Waldrop M P, Zak D R, Sinsabaugh R L, et al. Nitrogen deposition modifies soil carbon storage through changes in microbial enzymatic activity[J]. Ecological Applications, 2004,14(4):1172-1177. |
[6] | Elser J J, Kyle M, Makino W, et al. Ecological stoichiometry in the microbial food web:a test of the light: nutrient hypojournal[J]. Aquatic Microbial Ecology, 2003,31(1):49-65. |
[7] | 左宜平, 张馨月, 曾辉, 等. 大兴安岭森林土壤胞外酶活力的时空动态及其对潜在碳矿化的影响[J]. 北京大学学报:自然科学版, 2018,54(6):1311-1324. |
[8] |
Sinsabaugh R L, Lauber C L, Weintraub M N, et al. Stoichiometry of soil enzyme activity at global scale[J]. Ecology letters, 2008,11(11):1252-1264.
doi: 10.1111/j.1461-0248.2008.01245.x URL pmid: 18823393 |
[9] | Fanin N, Moorhead D, Bertrand I. Eco-enzymatic stoichiometry and enzymatic vectors reveal differential C, N, P dynamics in decaying litter along a land-use gradient[J]. Biogeochemistry, 2016,129(1/2):21-36. |
[10] | Sinsabaugh R L, Follstad Shah J J. Ecoenzymatic stoichiometry and ecological theory[J]. Annual Review of Ecology, Evolution, and Systematics, 2012,43:313-343. |
[11] | Luo L, Gu J D. Nutrient limitation status in a subtropical mangrove ecosystem revealed by analysis of enzymatic stoichiometry and microbial abundance for sediment carbon cycling[J]. International Biodeterioration & Biodegradation, 2018,128:3-10. |
[12] | 周正虎, 王传宽. 生态系统演替过程中土壤与微生物碳氮磷化学计量关系的变化[J]. 植物生态学报, 2016,40(12):1257-1266. |
[13] | Allison S D, Vitousek P M. Responses of extracellular enzymes to simple and complex nutrient inputs[J]. Soil Biology and Biochemistry, 2005,37(5):937-944. |
[14] | Drake J E, Darby B A, Giasson M A, et al. Stoichiometry constrains microbial response to root exudation-insights from a model and a field experiment in a temperate forest[J]. Biogeosciences, 2013,10(2):821-838. |
[15] | 刘红梅, 周广帆, 李洁, 等. 氮沉降对贝加尔针茅草原土壤酶活性的影响[J]. 生态环境学报, 2018,27(8):1387-1394. |
[16] | Johnson D, Leake J R, Lee J A, et al. Changes in soil microbial biomass and microbial activities in response to 7 years simulated pollutant nitrogen deposition on a heathland and two grasslands[J] Environmental Pollution, 1998,103(2/3):239-250. |
[17] | Zuo Y, Li J, Zeng H, et al. Vertical pattern and its driving factors in soil extracellular enzyme activity and stoichiometry along mountain grassland belts[J]. Biogeochemistry, 2018,141(1):23-39. |
[18] | Sinsabaugh R L, Shah J J F, Hill B H, et al. Ecoenzymatic stoichiometry of stream sediments with comparison to terrestrial soils[J]. Biogeochemistry, 2012,111(1/3):455-467. |
[19] |
Saraswati S, Parsons C T, Strack M. Access roads impact enzyme activities in boreal forested peatlands[J]. Science of the Total Environment, 2019,651:1405-1415.
doi: 10.1016/j.scitotenv.2018.09.280 URL pmid: 30360271 |
[20] |
Moscatelli M C, Lagomarsino A, Garzillo A M V, et al. β-Glucosidase kinetic parameters as indicators of soil quality under conventional and organic cropping systems applying two analytical approaches[J]. Ecological Indicators, 2012,13(1):322-327.
doi: 10.1016/j.ecolind.2011.06.031 URL |
[21] |
Stone M M, DeForest J L, Plante A F. Changes in extracellular enzyme activity and microbial community structure with soil depth at the Luquillo Critical Zone Observatory[J]. Soil Biology and Biochemistry, 2014,75:237-247.
doi: 10.1016/j.soilbio.2014.04.017 URL |
[22] |
Freeman C, Ostle N, Kang H. An enzymic'latch'on a global carbon store[J]. Nature, 2001,409(6817):149-150.
doi: 10.1038/35051650 URL pmid: 11196627 |
[23] |
Jing X, Chen X, Xiao W, et al. Soil enzymatic responses to multiple environmental drivers in the Tibetan grasslands: Insights from two manipulative field experiments and a meta-analysis[J]. Pedobiologia, 2018,71:50-58.
doi: 10.1016/j.pedobi.2018.10.001 URL |
[24] |
Sinsabaugh R L, Hill B H, Shah J J F. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment[J]. Nature, 2009,462(7274):795.
doi: 10.1038/nature08632 URL pmid: 20010687 |
[25] |
Reich P B, Oleksyn J. Global patterns of plant leaf N and P in relation to temperature and latitude[J]. Proceedings of the National Academy of Sciences, 2004,101(30):11001-11006.
doi: 10.1073/pnas.0403588101 URL |
[26] |
Bell T H, Klironomos J N, Henry H A L. Seasonal responses of extracellular enzyme activity and microbial biomass to warming and nitrogen addition[J]. Soil Science Society of America Journal, 2010,74(3):820-828.
doi: 10.2136/sssaj2009.0036 URL |
[27] |
Burns R G, DeForest J L, Marxsen J, et al. Soil enzymes in a changing environment: current knowledge and future directions[J]. Soil Biology and Biochemistry, 2013,58:216-234.
doi: 10.1016/j.soilbio.2012.11.009 URL |
[28] |
Xu Z, Yu G, Zhang X, et al. Soil enzyme activity and stoichiometry in forest ecosystems along the North-South Transect in eastern China (NSTEC)[J]. Soil Biology and Biochemistry, 2017,104:152-163.
doi: 10.1016/j.soilbio.2016.10.020 URL |
[29] |
Xiao W, Chen X, Jing X, et al. A meta-analysis of soil extracellular enzyme activities in response to global change[J]. Soil Biology and Biochemistry, 2018,123:21-32.
doi: 10.1016/j.soilbio.2018.05.001 URL |
[30] | Lu M, Zhou X, Yang Q, et al. Responses of ecosystem carbon cycle to experimental warming: a meta-analysis[J]. Ecology, 2013,94(3):726-738. |
[31] |
Henry H A L. Reprint of“Soil extracellular enzyme dynamics in a changing climate”[J]. Soil Biology and Biochemistry, 2013,56:53-59.
doi: 10.1016/j.soilbio.2012.10.022 URL |
[32] |
Zhou X, Chen C, Wang Y, et al. Warming and increased precipitation have differential effects on soil extracellular enzyme activities in a temperate grassland[J]. Science of the Total Environment, 2013,444:552-558.
doi: 10.1016/j.scitotenv.2012.12.023 URL pmid: 23298760 |
[33] |
Puissant J, Cécillon L, Mills R T E, et al. Seasonal influence of climate manipulation on microbial community structure and function in mountain soils[J]. Soil Biology and Biochemistry, 2015,80:296-305.
doi: 10.1016/j.soilbio.2014.10.013 URL |
[34] |
Peng X, Wang W. Stoichiometry of soil extracellular enzyme activity along a climatic transect in temperate grasslands of northern China[J]. Soil Biology and Biochemistry, 2016,98:74-84.
doi: 10.1016/j.soilbio.2016.04.008 URL |
[35] |
Parvin S, Blagodatskaya E, Becker J N, et al. Depth rather than microrelief controls microbial biomass and kinetics of C-, N-, P-and S-cycle enzymes in peatland[J]. Geoderma, 2018,324:67-76.
doi: 10.1016/j.geoderma.2018.03.006 URL |
[36] | 李焕茹, 朱莹, 田纪辉, 等. 碳氮添加对草地土壤有机碳氮磷含量及相关酶活性的影响[J]. 应用生态学报, 2018,29(8):2470-2476. |
[37] | 李瑞瑞, 卢艺, 王益明, 等. 氮添加对墨西哥柏人工林土壤碳氮磷化学计量特征及酶活性的影响[J]. 生态学杂志, 2019,38(2):384-393. |
[38] | 王文锋, 李春花, 黄绍文, 等. 不同施肥模式对设施菜田土壤酶活性的影响[J]. 应用生态学报, 2016,27(3):873-882. |
[39] |
Zhang W, Zhu J, Zhou X, et al. Effects of shallow groundwater table and fertilization level on soil physico-chemical properties, enzyme activities, and winter wheat yield[J]. Agricultural water management, 2018,208:307-317.
doi: 10.1016/j.agwat.2018.06.039 URL |
[40] | 范珍珍, 王鑫, 王超, 等. 整合分析氮磷添加对土壤酶活性的影响[J]. 应用生态学报, 2018,29(4):1266-1272. |
[41] |
Jian S, Li J, Chen J, et al. Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: A meta-analysis[J]. Soil Biology and Biochemistry, 2016,101:32-43.
doi: 10.1016/j.soilbio.2016.07.003 URL |
[42] |
Bragazza L, Freeman C, Jones T, et al. Atmospheric nitrogen deposition promotes carbon loss from peat bogs[J]. Proceedings of the National Academy of Sciences, 2006,103(51):19386-19389.
doi: 10.1073/pnas.0606629104 URL |
[43] |
张星星, 杨柳明, 陈忠, 等. 中亚热带不同母质和森林类型土壤生态酶化学计量特征[J]. 生态学报, 2018,38(16):5828-5836.
doi: 10.5846/stxb201708181492 URL |
[44] |
Jiang Y, Lei Y, Qin W, et al. Revealing microbial processes and nutrient limitation in soil through ecoenzymatic stoichiometry and glomalin-related soil proteins in a retreating glacier forefield[J]. Geoderma, 2019,338:313-324.
doi: 10.1016/j.geoderma.2018.12.023 URL |
[45] |
Wang C, Lv Y, Liu X L, et al. Ecological effects of atmospheric nitrogen deposition on soil enzyme activity[J]. Journal of forestry research, 2013,24(1):109-114.
doi: 10.1007/s11676-013-0330-4 URL |
[46] |
王晶苑, 张心昱, 温学发, 等. 氮沉降对森林土壤有机质和凋落物分解的影响及其微生物学机制[J]. 生态学报, 2013,33(5):1337-1346.
doi: 10.5846/stxb201204300621 URL |
[47] |
Han J, Jung J, Hyun S, et al. Effects of nutritional input and diesel contamination on soil enzyme activities and microbial communities in Antarctic soils[J]. Journal of Microbiology, 2012,50(6):916-924.
doi: 10.1007/s12275-012-2636-x URL |
[48] | 梁国鹏, 吴会军, 武雪萍, 等. 施氮量对夏玉米根际和非根际土壤酶活性及氮含量的影响[J]. 应用生态学报, 2016,27(6):1917-1924. |
[49] | 沈芳芳, 袁颖红, 樊后保, 等. 氮沉降对杉木人工林土壤有机碳矿化和土壤酶活性的影响[J]. 生态学报, 2012,32(2):517-525. |
[50] |
Sinsabaugh R L, Turner B L, Talbot J M, et al. Stoichiometry of microbial carbon use efficiency in soils[J]. Ecological Monographs, 2016,86(2):172-189.
doi: 10.1890/15-2110.1 URL |
[51] |
Nannipieri P, Trasar Cepeda C, Dick R P. Soil enzyme activity: a brief history and biochemistry as a basis for appropriate interpretations and meta-analysis[J]. Biology and fertility of soils, 2018,54(1):11-19.
doi: 10.1007/s00374-017-1245-6 URL |
[1] | ZHAO Jiaojiao, AI Jianguo. Short-term Response of Photosynthesis and Chlorophyll Fluorescence Characteristics of Fir Seedlings to Nitrogen Deposition [J]. Chinese Agricultural Science Bulletin, 2022, 38(29): 67-73. |
[2] | Gao Wenli, Zaynur Turxun, Sang Yu, Ma Xiaodong. Effect of Arbuscular Mycorrhizal Fungi on Nitrogen Absorption of Plants: A Review [J]. Chinese Agricultural Science Bulletin, 2021, 37(27): 53-58. |
[3] | Cheng Zhichao, Wang Wenhao, Li Mengsha, Sui Xin, Yin Weiping, Li Guofu. Bibliometrics Analysis of Nitrogen Deposition Knowledge Based on CiteSpace [J]. Chinese Agricultural Science Bulletin, 2021, 37(1): 158-164. |
[4] | Wang Yuan, Wang Qinggui, Sun Yuan, Xing Yajuan. Ecological Functions of Soil Animals and Environmental Factors of Terrestrial Ecosystems: Relationship Review [J]. Chinese Agricultural Science Bulletin, 2020, 36(23): 54-59. |
[5] | Xu Meng, Wang Qinggui, Yan Guoyong, Xing Yajuan. Warming and Nitrogen Application: Effects on Decomposition of Leaf Litter in the Less Khingan Mountains [J]. Chinese Agricultural Science Bulletin, 2020, 36(14): 46-53. |
[6] | . Exogenous Carbon and Nitrogen: Effects on Plant Ecological Stoichiometry Characteristics [J]. Chinese Agricultural Science Bulletin, 2018, 34(5): 54-60. |
[7] | . Association Analysis of Soil Microorganism and Plant Species Diversity under the Climate Change [J]. Chinese Agricultural Science Bulletin, 2018, 34(20): 111-117. |
[8] | . Research Progress of Effects of Nitrogen Deposition on Soil Nitrogen Budget in Boreal Forests [J]. Chinese Agricultural Science Bulletin, 2018, 34(12): 98-107. |
[9] | . Response of Fine Root to Nitrogen Deposition and Elevated Atmospheric CO2 Concentration in Boreal Forest [J]. Chinese Agricultural Science Bulletin, 2017, 33(30): 84-90. |
[10] | Mao Jinhua,Xing Yajuan,Ma Hongyu and Wang Qinggui. Research Progress of Nitrogen Deposition Effect on Plant Growth [J]. Chinese Agricultural Science Bulletin, 2017, 33(29): 42-48. |
[11] | . Research Progress of Nitrogen Deposition Effect on Soil Microorganism in Boreal Forest [J]. Chinese Agricultural Science Bulletin, 2017, 33(28): 111-116. |
[12] | Guo Liang,Wang Qinggui and Xing Yajuan. Response of Forest Ecosystem Soil Carbon Pool to Nitrogen Deposition:A Review [J]. Chinese Agricultural Science Bulletin, 2016, 32(32): 81-87. |
[13] | . Interaction Effects of Soil Microbial Carbon and Nitrogen: A Review [J]. Chinese Agricultural Science Bulletin, 2016, 32(23): 65-71. |
[14] | Dong Xiongde,Xing Yajuan,Yan Guoyong and Wang Qinggui. Response of Litter Decomposition in Different Ecosystem Types to Nitrogen Deposition: A Review [J]. Chinese Agricultural Science Bulletin, 2016, 32(22): 140-150. |
[15] | . Research Progress of Nitrogen Deposition Effect on Fine Root Dynamic and Morphological Characteristics [J]. Chinese Agricultural Science Bulletin, 2016, 32(15): 79-85. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||