Chinese Agricultural Science Bulletin ›› 2021, Vol. 37 ›› Issue (27): 53-58.doi: 10.11924/j.issn.1000-6850.casb2020-0761
Previous Articles Next Articles
Gao Wenli(), Zaynur Turxun, Sang Yu, Ma Xiaodong(
)
Received:
2020-12-08
Revised:
2021-04-13
Online:
2021-09-25
Published:
2021-10-28
Contact:
Ma Xiaodong
E-mail:371265555@qq.com;mxd1107@126.com
CLC Number:
Gao Wenli, Zaynur Turxun, Sang Yu, Ma Xiaodong. Effect of Arbuscular Mycorrhizal Fungi on Nitrogen Absorption of Plants: A Review[J]. Chinese Agricultural Science Bulletin, 2021, 37(27): 53-58.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2020-0761
[1] | 郭秀珍, 毕国昌. 林木菌根及其应用[M]. 北京: 中国林业出版社, 1989. |
[2] | 韦莉莉, 卢昌熠, 丁晶, 等. 丛枝菌根真菌参与下植物—土壤系统的养分交流及调控[J]. 生态学报, 2016, 36(14):4233-4243. |
[3] | 冉志芳, 杨小彤, 丁伟娜, 等. 栽培西洋参根系丛枝菌根初步调查[J]. 中国中药杂志, 2020:1-8. |
[4] | 汪茜, 宋娟, 李冬萍, 等. 丛枝菌根真菌及深色有隔内生真菌对大田生姜生长效应分析[J]. 中国农学通报, 2021, 37(06):62-67. |
[5] | 赵平, 孙谷畴, 彭少麟. 植物氮素营养的生理生态学研究[J]. 生态科学, 1998(02):39-44. |
[6] | 尹秀丽, 张喜春, 范双喜, 等. 设施番茄无土栽培N、P、K养分变化动态监测[J]. 中国农学通报, 2010, 26(06):157-161. |
[7] | 罗绪强, 王世杰, 刘秀明. 陆地生态系统植物的氮源及氮素吸收[J]. 生态学杂志, 2007(07):1094-1100. |
[8] | 肖琴, 徐炜, 杨淑君, 等. 光氮耦合调控水稻叶绿素合成关键酶研究[J]. 河南农业, 2019(32):58-60. |
[9] | 张庆春, 张玉乐, 孔景萍. 氮、磷、钾在植物生长中的作用[J]. 河南科技:乡村版, 2009(2):22-22. |
[10] |
Leigh J, Hodge A, Fitter A H. Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material[J]. New Phytologist, 2009, 181(1):199-207.
doi: 10.1111/nph.2009.181.issue-1 URL |
[11] |
Tanaka Y, Yano K. Nitrogen delivery to maize via mycorrhizal hyphae depends on the form of N supplied[J]. Plant Cell and Environment, 2005, 28(10):1247-1254.
doi: 10.1111/pce.2005.28.issue-10 URL |
[12] |
Messenguy F, Colin D, Ten Have J. Regulation of compartimentation of amino pools in Saccharomyces cerevisiae and its effects on metabolic control[J]. European Journal of Biochemistry, 1980, 108:439-447.
pmid: 6997042 |
[13] | Amp H R. Different forms of nitrogen utilization and effect of exogenous glucose on their metabolism in germinating spores of AM fungus[J]. Scientia Sinica(Vitae), 2010, 40(3):239-249. |
[14] | Pietikäinen A, Kytöviita M M. Defoliation changes mycorrhizal benefit and competitive interactions between seedlings and adult plants[J]. Journal of Ecology, 2007, 95(4). |
[15] |
He Y J, Cornelissen Johannes H C, Wang P P, et al. Nitrogen transfer from one plant to another depends on plant biomass production between conspecific and heterospecific species via a common arbuscular mycorrhizal network.[J]. Environmental science and pollution research international, 2019, 26(9):1-10
doi: 10.1007/s11356-018-3003-1 URL |
[16] | 王超. 丛枝菌根真菌介导的不同地区麦蚜-小麦互作研究[D]. 开封:河南大学, 2020. |
[17] | 杨应, 蒋长洪, 何跃军, 等. 丛枝菌根网对喀斯特适生植物氮、磷化学计量特征的影响[J]. 植物生理学报, 2017, 53(12):2078-2090. |
[18] |
Bethlenfalvay G J Reyes-Solis M G Camel S B, et al. Nutrient transfer between the root zones of soybean and maize plants connected by a common mycorrhizal mycelium[J]. Physiologia Plantarum, 1991, 82(3):423-432.
doi: 10.1111/ppl.1991.82.issue-3 URL |
[19] | 艾为党, 李晓林, 左元梅, 等. 玉米、花生根间菌丝桥对氮传递的研究[J]. 作物学报, 2000(04):473-481. |
[20] |
He X H, Critchley C, Bledsoe C. Nitrogen Transfer Within and Between Plants Through Common Mycorrhizal Networks (CMNs)[J]. Critical Reviews in Plant Sciences, 2003, 22(6):531-567.
doi: 10.1080/713608315 URL |
[21] |
Li Y, Ran W, Zhang R, et al. Facilitated legume nodulation, phosphate uptake and nitrogen transfer by arbuscular inoculation in an upland rice and mung bean intercropping system[J]. Plant and Soil, 2009, 315(1-2):285-296.
doi: 10.1007/s11104-008-9751-9 URL |
[22] | 吴巍, 赵军. 植物对氮素吸收利用的研究进展[J]. 中国农学通报, 2010, 26(13):75-78. |
[23] | 桑钰, 高文礼, 再努尔·吐尔逊, 等. 干旱胁迫下AMF对多枝柽柳幼苗和疏叶骆驼刺根系生长和氮素吸收分配的影响[J]. 干旱区研究, 2021, 38(01):247-256. |
[24] | 汪翠翠, 王志鹏, 李梦瑶, 等. 不同外源氮对丛枝菌根真菌Rhizophagus irregularis侵染棉花植株和氮磷转运的影响[J]. 工业微生物, 2018, 48(04):12-16. |
[25] |
Tanaka Y, Yano K. Nitrogen delivery to maize via mycorrhizal hyphae depends on the form of N supplied[J]. Plant Cell and Environment, 2005, 28(10):1247-1254.
doi: 10.1111/pce.2005.28.issue-10 URL |
[26] | 李侠, 张俊伶. 丛枝菌根根外菌丝对铵态氮和硝态氮吸收能力的比较[J]. 植物营养与肥料学报, 2009, 15(03):683-689. |
[27] | 吴强盛, 邹英宁. 丛枝菌根帮助植物吸收和转运N的研究进展[J]. 长江大学学报:自然科学版农学卷, 2009(02):72-74. |
[28] | 沈菊培, 张丽梅, 郑袁明, 等. 长期施肥对土壤硝态氮和铵态氮分布的影响[C].中国生态学会2006学术年会论文荟萃, 2006. |
[29] |
Smith S E. Mycorrhizas of autotrophic higher plants[J]. Biological Reviews, 1980, 55(4):475-510.
doi: 10.1111/brv.1980.55.issue-4 URL |
[30] |
Heidi-Jayne Hawkins, Eckhard George. Reduced N-nitrogen Transport Through Arbuscular Mycorrhizal Hyphae to. Nitrate Nutrition[J]. Annals of Botany, 2001, 87(3):303-311.
doi: 10.1006/anbo.2000.1305 URL |
[31] | 徐晓鹏, 傅向东, 廖红. 植物铵态氮同化及其调控机制的研究进展[J]. 植物学报, 2016, 51(02):152-166. |
[32] | 王常慧, 邢雪荣, 韩兴国. 草地生态系统中土壤氮素矿化影响因素的研究进展[J]. 应用生态学报, 2004, 15(11):2184-2188. |
[33] |
Hawkins H J, Johansen A, George E. Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi[J]. Plant and Soil, 2000, 226(2):275-285.
doi: 10.1023/A:1026500810385 URL |
[34] | 陈永亮, 陈保冬, 刘蕾, 等. 丛枝菌根真菌在土壤氮素循环中的作用[J]. 生态学报, 2014, 34(17):4807-4815. |
[35] | 李侠, 张俊伶. 丛枝菌根根外菌丝对不同形态氮素的吸收能力[J]. 核农学报, 2007, 21(2):195-200. |
[36] | 金海如, 张萍华, 蒋冬花. 同位素示踪研究丛枝菌根真菌吸收不同氮素并向寄主植物输运的机理[J]. 土壤学报, 2011, 48(4):888-892. |
[37] |
Hodge A, Campbell C D, Fitter A H. An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material[J]. Nature, 2001, 413(6853):297-299.
doi: 10.1038/35095041 URL |
[38] |
Jin H, Pfeffer P E, Douds D D, et al. The uptake, metabolism, transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis[J]. New Phytologist, 2005, 168(3):687-696.
pmid: 16313650 |
[39] |
Imaizumi-Anraku H, Takeda N, Charpentier M, et al. Plastid proteins crucial for symbiotic fungal and bacterial entry into plant roots[J]. Nature, 2005, 433(7025):527-31.
doi: 10.1038/nature03237 URL |
[40] |
Son C L, Smith F A, Smith S E. Effect of light intensity on root growth, mycorrhizal infection and phosphate uptake in onion (Allium cepa L.)[J]. Plant and Soil, 1988, 111(2):183-186.
doi: 10.1007/BF02139935 URL |
[41] |
Bago B, Pfeffer P E, Douds D D, et al. Carbon Metabolism in Spores of the Arbuscular Mycorrhizal Fungus Glomus intraradices as Revealed by Nuclear Magnetic Resonance Spectroscopy[J]. Plant Physiology, 1999, 121(1):263-271.
pmid: 10482682 |
[42] |
Govindarajulu M, Pfeffer P, Jin H, et al. Nitrogen transfer in the arbuscular mycorrhizal symbiosis[J]. Nature, 2005, 435(7043):819-823.
doi: 10.1038/nature03610 URL |
[43] | Marschuen, Ii C J, WangZ Y, et al. Mineral Nutrition of Higher Plants[M]. Beijing: China Agric ultumal Univesity Press, 2001:160-168. |
[44] | Jan-Patrick T, Mare S A, Christiane C. Nitrogen tmansfer and asimilation between the abused ar mycorhizal fungous Glomus inturadices Schenck & Smith and Ri T-DNA noos of Daucus caota L. in an in vitro compartmented system[J]. Camadian Jourmal of Micmbidlogy, 2004, 50:251-260. |
[45] |
RolinsonS A, SladeA P, FoxG G, et al. The role of glutamate dehyroge nase in plant nitrogen metaboliamn[J]. Plant Physiol, 1991, 95:509-516.
doi: 10.1104/pp.95.2.509 URL |
[46] |
Cruz C, Egsgaard H, Trujillo C, et al. Enzymatic Evidence for the Key Role of Arginine in Nitrogen Translocation by Arbuscular Mycorrhizal Fungi[J]. Plant physiology, 2007, 144(2):782-792.
doi: 10.1104/pp.106.090522 URL |
[47] |
Manjula G, Philip E P, Hairu J, et al. Ningen transfer in the arbuscular myeorhizal y mbiosis[J]. Nature, 2005, 435:819-823.
doi: 10.1038/nature03610 URL |
[48] |
Fitter A H, Graves J D, Watkins N K, et al. Carbon transfer between plants and its control in networks of arbuscular mycorrhizas[J]. Functional Ecology, 1998, 12(3):406-412.
doi: 10.1046/j.1365-2435.1998.00206.x URL |
[49] | 邓胤. 丛枝菌根利用无机氮的机制研究[D]. 重庆:西南大学, 2009. |
[50] |
Sugiura Y Akiyama R tanaka S, et al. Myristate can be used as a carbon and energy source for the asymbiotic growth of arbuscular mycorrhizal fungi[J]. Proceedings of the National Academy of Sciences, 2020, 117(41):25779-25788.
doi: 10.1073/pnas.2006948117 URL |
[1] | ZHOU Dongdong, ZHANG Jun, GE Mengjie, LIU Zhonghong, ZHU Xiaohuan, LI Chunyan. Effects of Different Nitrogen Treatments on Grain Yield, Nitrogen Utilization Efficiency and Quality of Late-sowing Wheat ‘Huaimai 36’ Following Rice [J]. Chinese Agricultural Science Bulletin, 2023, 39(1): 1-7. |
[2] | LI Shaojie, XIAO Qingshan, SONG Fuqiang, WANG Xin. Propagation of Arbuscular Mycorrhizal Fungi: A Review [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 115-122. |
[3] | WANG Fuyu, CHEN Guiju, SUN Leiming, HUANG Ling, SHAO Minmin, ZHAO Kai, YANG Benzhou, ZHANG Yudan, YAN Lu, WANG Lin. Interaction Between Tillage Modes and Nitrogen Application Rates: Effects on the Growth, Yield and Quality of Wheat [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 20-26. |
[4] | HONG Bo, ZHANG Ze, ZHANG Qiang, MA Yiru, YI Xiang, LV Xin. The Nitrogen Content in Cotton Leaves: Estimation Based on Digital Image [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 49-55. |
[5] | LI Xinghua, WANG Huan, ZHANG Sheng, CAI Xingxing, ZHOU Qiang, ZHOU Nan. Nitrogen Application Rate and Mode: Effects on Yield and Dry Matter Accumulation and Transport After Flowering of Late Indica Rice [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 6-13. |
[6] | BAI Wei, HU Yang, HU Qingqing, CUI Jinli, ZHANG Baoying, YANG Sumei. Effect of Main Cultivation Factors on Yield of Oil Sunflower in North Hebei [J]. Chinese Agricultural Science Bulletin, 2022, 38(5): 17-22. |
[7] | WANG Yan, ZHU Kaidi, SUN Hongren, ZHANG Jiping, LV Yucai, WANG Jian. Abundance-deficiency Index of Soil Nutrients and Appropriate Fertilizer Application Rates for Apple Planting in China: A Preliminary Study [J]. Chinese Agricultural Science Bulletin, 2022, 38(5): 69-78. |
[8] | XU Lingqing, LI Jiajia, CHANG Xiao, ZHANG Yunlong, LIU Dali. The Mechanism of Soil Nitrogen Mineralization: Research Progress [J]. Chinese Agricultural Science Bulletin, 2022, 38(34): 97-101. |
[9] | TIAN Yutong, HAN Zhiwei, ZHAO Ran, TIAN Yongzhu, LUO Guangfei, YANG Miao. Effects of Typical Land Use Types on Soil Nitrogen Characteristics in Karst Agricultural Areas of Southwest China [J]. Chinese Agricultural Science Bulletin, 2022, 38(33): 89-96. |
[10] | XU Danyang, LI Hongying, SUN Yixiang, WU Gang, WANG Jiabao, YUAN Manman, WANG Peixuan, ZHANG Xiangming, SHU Xiaohai. Combined Application of Different Proportions of Organic and Inorganic Fertilizers: Effects on Rice Yield and Nitrogen Use Efficiency [J]. Chinese Agricultural Science Bulletin, 2022, 38(31): 1-5. |
[11] | GUO Xiaoshan, WANG Linchuang, ZHAO Jianfeng, SUN Yudong, WANG Guolian, QU Haiyong, LUO Dexu, XU Wenzhao, YIN Lian. Effects of Nitrogen and Potassium on Saponin in Momordica charantia [J]. Chinese Agricultural Science Bulletin, 2022, 38(31): 43-48. |
[12] | LIANG Tian, ZHANG Xiaodong, ZHANG Yu, ZHANG Zuozhong, SI Riguleng, SU Budenggerile, NA Renhua. Effect of Bacterial Enzyme Preparation on Composting of Cow Manure Under Different C/N Conditions [J]. Chinese Agricultural Science Bulletin, 2022, 38(31): 77-82. |
[13] | LANG Man, YUAN Xiaohang, LI Ping. Effects of Different Nitrogen Application Levels on Net Nitrogen Transformation Rate and Greenhouse Gas Emission in Cropland Black Soil [J]. Chinese Agricultural Science Bulletin, 2022, 38(31): 93-100. |
[14] | LIU Qi, GAO Zhiqiang, YANG Zhenping, QIAO Yuejing. Rational Nitrogen Fertilizer Application Rates Improving the Bacterial Community Structure and Physicochemical Properties of Winter Wheat Tillage Soil [J]. Chinese Agricultural Science Bulletin, 2022, 38(30): 77-84. |
[15] | ZHOU Lanlan, LIU Meijin, LI Mingjun, XU Dongli, WANG Guoping, GUO Jianwei, HU Zaiqing, ZHANG Zhongguang, LI Fengqing, SANG Anping, ZHANG Tao, XIAO Yunshan, YAN Chunmei. Effects on Ammonium Nitrogen and Nitrate Nitrogen in Rhizosphere Soil of Highland Barley Under Different Fertilization Treatments [J]. Chinese Agricultural Science Bulletin, 2022, 38(30): 85-90. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||