Chinese Agricultural Science Bulletin ›› 2020, Vol. 36 ›› Issue (32): 8-16.doi: 10.11924/j.issn.1000-6850.casb2020-0041
Previous Articles Next Articles
Wen Zhang1(), Geng Gui1, Wang Yuguang1, Sun Fei2, Wang Xiwei1, Yu Lihua1(
)
Received:
2020-04-25
Revised:
2020-06-09
Online:
2020-11-15
Published:
2020-11-19
Contact:
Yu Lihua
E-mail:1309592486@qq.com;32307812@qq.com
CLC Number:
Wen Zhang, Geng Gui, Wang Yuguang, Sun Fei, Wang Xiwei, Yu Lihua. The Physiological and Proteomics Analysis of Salt-resistance Sugar Beet Under Salt Stress[J]. Chinese Agricultural Science Bulletin, 2020, 36(32): 8-16.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2020-0041
处理间对比 | 能量代谢 相关蛋白 | 物质代谢 相关蛋白 | 光合作用 相关蛋白 | 蛋白质修饰加工相关蛋白 | 防御与胁迫相关蛋白 | 转录相关蛋白 | 未知 蛋白 |
---|---|---|---|---|---|---|---|
低盐-对照 | 0 | 25 | 41.66 | 0 | 16.67 | 16.67 | 0 |
高盐-对照 | 8.70 | 26.09 | 30.43 | 4.35 | 17.39 | 8.7 | 4.35 |
高盐-低盐 | 9.09 | 0 | 36.36 | 9.09 | 18.18 | 18.18 | 9.09 |
处理间对比 | 能量代谢 相关蛋白 | 物质代谢 相关蛋白 | 光合作用 相关蛋白 | 蛋白质修饰加工相关蛋白 | 防御与胁迫相关蛋白 | 转录相关蛋白 | 未知 蛋白 |
---|---|---|---|---|---|---|---|
低盐-对照 | 0 | 25 | 41.66 | 0 | 16.67 | 16.67 | 0 |
高盐-对照 | 8.70 | 26.09 | 30.43 | 4.35 | 17.39 | 8.7 | 4.35 |
高盐-低盐 | 9.09 | 0 | 36.36 | 9.09 | 18.18 | 18.18 | 9.09 |
功能 | 标号及蛋白名称 | 蛋白所在 比对组 | Mascot 得分 | 覆盖度 | 变化 倍数 | P | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
能量 代谢 | 10. ATP合酶δ链 * ATP synthase delta chain | 高盐-对照 | 72 | 4% | 1.66 | 0.004 | ||||||
高盐-低盐 | 72 | 4% | 1.66 | 0.004 | ||||||||
24. ATP合酶γ链ATP synthase gamma chain | 高盐-对照 | 279 | 11% | 4.29 | 0.032 | |||||||
物质 代谢 | 126. 3-异丙基苹果酸脱氢酶3-isopropylmalate dehydrogenase | 低盐-对照 | 103 | 6% | -2.42 | 0.001 | ||||||
127. 二氨基庚二酸异构酶Diaminopimelate epimerase | 低盐-对照 | 196 | 15% | -3.25 | 0.001 | |||||||
128. 丙二酸单酰CoA-ACP转酰基酶Malonyl-CoA-acyl carrier protein transacylase | 低盐-对照 | 302 | 11% | -2.60 | 0.002 | |||||||
12. α-1,4-葡聚糖-蛋白质合酶α-1,4-glucan-protein synthase | 高盐-对照 | 298 | 13% | 1.51 | 0.012 | |||||||
22. S-腺苷甲硫氨酸合成酶1 S-adenosylmethionine synthase 1 | 高盐-对照 | 831 | 25% | 2.03 | 0.001 | |||||||
23. UDP-D-芹菜糖酶/UDP-D-木糖酶合酶1 UDP-D-apiose/UDP-D-xylose synthase 1 | 高盐-对照 | 462 | 18% | 1.50 | 0.026 | |||||||
27. 胆碱单加氧酶Choline monooxygenase | 高盐-对照 | 1118 | 33% | 1.89 | 0.020 | |||||||
28. Zn结合脱氢酶家族蛋白亚型1 Zn-binding dehydrogenase family protein isoform 1 | 高盐-对照 | 141 | 7% | 1.58 | 0.025 | |||||||
30. Zn结合脱氢酶家族蛋白亚型1 Zn-binding dehydrogenase family protein isoform 1 | 高盐-对照 | 231 | 4% | 4.54 | 0.007 | |||||||
光合 作用 | 3. 放氧增强蛋白1 Oxygen-evolving enhancer protein 1, chloroplastic | 高盐-对照 | 376 | 19% | -2.28 | 0.002 | ||||||
7. 光系统II稳定性/装配因子HCF136 Photosystem II stability/assembly factor HCF136 | 高盐-对照 | 180 | 11% | -2.06 | 0.009 | |||||||
8. 光系统II放氧复合体蛋白23kDa polypeptide of the oxygen evolving complex of photosystem II | 高盐-对照 | 153 | 10% | -3.97 | 0.006 | |||||||
11. PsbP结构域蛋白3 psbP domain-containing protein 3 | 低盐-对照 | 54 | 4% | -2.01 | 0.013 | |||||||
高盐-对照 | 54 | 4% | -2.07 | 0.002 | ||||||||
31. 晶体结构的光合A2B2-甘油醛-3-磷酸脱氢酶复合NADP Crystal Structure Of The Photosynthetic A2b2-Glyceraldehyde-3- Phosphate Dehydrogenase | 低盐-对照 | 254 | 8% | 2.10 | 0.005 | |||||||
高盐-对照 | 254 | 8% | 2.41 | 0.008 | ||||||||
32. 铁氧还原蛋白-NADP还原酶Ferredoxin--NADP reductase | 低盐-对照 | 500 | 20% | 1.71 | 0.036 | |||||||
高盐-对照 | 500 | 20% | 3.23 | 0.006 | ||||||||
33. 磷酸烯醇式丙酮酸羧化酶家族蛋白PEPC * Phosphoenolpyruvate carboxylase family protein | 低盐-对照 | 121 | 3% | 2.64 | 0.003 | |||||||
高盐-对照 | 121 | 3% | 2.64 | 0.003 | ||||||||
高盐-低盐 | 121 | 3% | 1.84 | 0.009 | ||||||||
37.核酮糖-1,5 - 二磷酸羧化酶/加氧酶Ribulose-1,5-bisphosphate carboxylase/oxygenase activase | 高盐-低盐 | 162 | 8% | 3.17 | 0.003 | |||||||
44. 吡哆醇合成蛋白ER1 Pyridoxin biosynthesis protein ER1 | 高盐-低盐 | 109 | 9% | 1.64 | 0.045 | |||||||
47. 磷酸烯醇式丙酮酸羧化酶家族蛋白PEPC *Phosphoenolpyruvate carboxylase family protein | 高盐-低盐 | 137 | 3% | 1.94 | 0.017 | |||||||
130. 核酮糖二磷酸羧化酶 RuBP* Ribulose bisphosphate carboxylase large chain | 低盐-对照 | 133 | 4% | -1.73 | 0.036 | |||||||
修饰 加工 | 肽脯氨酰顺反异构酶Peptidyl-prolyl cis-trans isomerase | 高盐-对照 | 254 | 11% | -1.73 | 0.003 | ||||||
42. 蛋白质二硫键异构酶 Protein disulfide isomerase | 高盐-低盐 | 115 | 6% | 1.78 | 0.005 | |||||||
防御与胁迫 | 14. harpin结合蛋白1 Harpin binding protein 1 | 高盐-对照 | 166 | 8% | -1.89 | 0.002 | ||||||
17. 铜-锌超氧化物歧化酶 Copper-zinc superoxide dismutase | 低盐-对照 | 451 | 35% | -3.31 | 0.005 | |||||||
高盐-对照 | 451 | 35% | -1.73 | 0.001 | ||||||||
19. 抗坏血酸过氧化物酶 Ascorbate peroxidase | 高盐-对照 | 393 | 25% | 1.66 | 0.005 | |||||||
29. H-5型硫氧还原蛋白 Thioredoxin H-type 5 | 低盐-对照 | 108 | 8% | 1.90 | 0.001 | |||||||
高盐-对照 | 108 | 8% | 1.61 | 0.007 | ||||||||
43. 抗坏血酸过氧化物酶 Ascorbate peroxidase 2 | 高盐-低盐 | 212 | 20% | 1.62 | 0.017 | |||||||
45. L-抗坏血酸过氧化物酶前体 Stromal L-ascorbate peroxidase precursor | 高盐-低盐 | 361 | 11% | 2.18 | 0.004 | |||||||
转录 | 15. 核糖核蛋白 * Ribonucleoprotein, chloroplast | 高盐-对照 | 91 | 8% | -1.55 | 0.013 | ||||||
21. 伸长因子tu Elongation factor Tu, chloroplastic | 低盐-对照 | 568 | 12% | 1.68 | 0.004 | |||||||
高盐-对照 | 568 | 12% | 2.40 | 0.015 | ||||||||
46. 基本转录因子3亚型1 Basic transcription factor 3 isoform 1 | 低盐-对照 | 264 | 13% | -2.81 | 0.004 | |||||||
高盐-低盐 | 264 | 13% | 2.82 | 0.001 | ||||||||
48. GTP结合核蛋白Ran/TC4 GTP-binding nuclear protein Ran/TC4 | 高盐-低盐 | 388 | 27% | 1.80 | 0.018 | |||||||
未知 蛋白 | 25. predicted protein | 高盐-对照 | 128 | 8% | -1.55 | 0.004 | ||||||
41. unknown | 高盐-低盐 | 344 | 12% | 1.87 | 0.001 |
功能 | 标号及蛋白名称 | 蛋白所在 比对组 | Mascot 得分 | 覆盖度 | 变化 倍数 | P | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
能量 代谢 | 10. ATP合酶δ链 * ATP synthase delta chain | 高盐-对照 | 72 | 4% | 1.66 | 0.004 | ||||||
高盐-低盐 | 72 | 4% | 1.66 | 0.004 | ||||||||
24. ATP合酶γ链ATP synthase gamma chain | 高盐-对照 | 279 | 11% | 4.29 | 0.032 | |||||||
物质 代谢 | 126. 3-异丙基苹果酸脱氢酶3-isopropylmalate dehydrogenase | 低盐-对照 | 103 | 6% | -2.42 | 0.001 | ||||||
127. 二氨基庚二酸异构酶Diaminopimelate epimerase | 低盐-对照 | 196 | 15% | -3.25 | 0.001 | |||||||
128. 丙二酸单酰CoA-ACP转酰基酶Malonyl-CoA-acyl carrier protein transacylase | 低盐-对照 | 302 | 11% | -2.60 | 0.002 | |||||||
12. α-1,4-葡聚糖-蛋白质合酶α-1,4-glucan-protein synthase | 高盐-对照 | 298 | 13% | 1.51 | 0.012 | |||||||
22. S-腺苷甲硫氨酸合成酶1 S-adenosylmethionine synthase 1 | 高盐-对照 | 831 | 25% | 2.03 | 0.001 | |||||||
23. UDP-D-芹菜糖酶/UDP-D-木糖酶合酶1 UDP-D-apiose/UDP-D-xylose synthase 1 | 高盐-对照 | 462 | 18% | 1.50 | 0.026 | |||||||
27. 胆碱单加氧酶Choline monooxygenase | 高盐-对照 | 1118 | 33% | 1.89 | 0.020 | |||||||
28. Zn结合脱氢酶家族蛋白亚型1 Zn-binding dehydrogenase family protein isoform 1 | 高盐-对照 | 141 | 7% | 1.58 | 0.025 | |||||||
30. Zn结合脱氢酶家族蛋白亚型1 Zn-binding dehydrogenase family protein isoform 1 | 高盐-对照 | 231 | 4% | 4.54 | 0.007 | |||||||
光合 作用 | 3. 放氧增强蛋白1 Oxygen-evolving enhancer protein 1, chloroplastic | 高盐-对照 | 376 | 19% | -2.28 | 0.002 | ||||||
7. 光系统II稳定性/装配因子HCF136 Photosystem II stability/assembly factor HCF136 | 高盐-对照 | 180 | 11% | -2.06 | 0.009 | |||||||
8. 光系统II放氧复合体蛋白23kDa polypeptide of the oxygen evolving complex of photosystem II | 高盐-对照 | 153 | 10% | -3.97 | 0.006 | |||||||
11. PsbP结构域蛋白3 psbP domain-containing protein 3 | 低盐-对照 | 54 | 4% | -2.01 | 0.013 | |||||||
高盐-对照 | 54 | 4% | -2.07 | 0.002 | ||||||||
31. 晶体结构的光合A2B2-甘油醛-3-磷酸脱氢酶复合NADP Crystal Structure Of The Photosynthetic A2b2-Glyceraldehyde-3- Phosphate Dehydrogenase | 低盐-对照 | 254 | 8% | 2.10 | 0.005 | |||||||
高盐-对照 | 254 | 8% | 2.41 | 0.008 | ||||||||
32. 铁氧还原蛋白-NADP还原酶Ferredoxin--NADP reductase | 低盐-对照 | 500 | 20% | 1.71 | 0.036 | |||||||
高盐-对照 | 500 | 20% | 3.23 | 0.006 | ||||||||
33. 磷酸烯醇式丙酮酸羧化酶家族蛋白PEPC * Phosphoenolpyruvate carboxylase family protein | 低盐-对照 | 121 | 3% | 2.64 | 0.003 | |||||||
高盐-对照 | 121 | 3% | 2.64 | 0.003 | ||||||||
高盐-低盐 | 121 | 3% | 1.84 | 0.009 | ||||||||
37.核酮糖-1,5 - 二磷酸羧化酶/加氧酶Ribulose-1,5-bisphosphate carboxylase/oxygenase activase | 高盐-低盐 | 162 | 8% | 3.17 | 0.003 | |||||||
44. 吡哆醇合成蛋白ER1 Pyridoxin biosynthesis protein ER1 | 高盐-低盐 | 109 | 9% | 1.64 | 0.045 | |||||||
47. 磷酸烯醇式丙酮酸羧化酶家族蛋白PEPC *Phosphoenolpyruvate carboxylase family protein | 高盐-低盐 | 137 | 3% | 1.94 | 0.017 | |||||||
130. 核酮糖二磷酸羧化酶 RuBP* Ribulose bisphosphate carboxylase large chain | 低盐-对照 | 133 | 4% | -1.73 | 0.036 | |||||||
修饰 加工 | 肽脯氨酰顺反异构酶Peptidyl-prolyl cis-trans isomerase | 高盐-对照 | 254 | 11% | -1.73 | 0.003 | ||||||
42. 蛋白质二硫键异构酶 Protein disulfide isomerase | 高盐-低盐 | 115 | 6% | 1.78 | 0.005 | |||||||
防御与胁迫 | 14. harpin结合蛋白1 Harpin binding protein 1 | 高盐-对照 | 166 | 8% | -1.89 | 0.002 | ||||||
17. 铜-锌超氧化物歧化酶 Copper-zinc superoxide dismutase | 低盐-对照 | 451 | 35% | -3.31 | 0.005 | |||||||
高盐-对照 | 451 | 35% | -1.73 | 0.001 | ||||||||
19. 抗坏血酸过氧化物酶 Ascorbate peroxidase | 高盐-对照 | 393 | 25% | 1.66 | 0.005 | |||||||
29. H-5型硫氧还原蛋白 Thioredoxin H-type 5 | 低盐-对照 | 108 | 8% | 1.90 | 0.001 | |||||||
高盐-对照 | 108 | 8% | 1.61 | 0.007 | ||||||||
43. 抗坏血酸过氧化物酶 Ascorbate peroxidase 2 | 高盐-低盐 | 212 | 20% | 1.62 | 0.017 | |||||||
45. L-抗坏血酸过氧化物酶前体 Stromal L-ascorbate peroxidase precursor | 高盐-低盐 | 361 | 11% | 2.18 | 0.004 | |||||||
转录 | 15. 核糖核蛋白 * Ribonucleoprotein, chloroplast | 高盐-对照 | 91 | 8% | -1.55 | 0.013 | ||||||
21. 伸长因子tu Elongation factor Tu, chloroplastic | 低盐-对照 | 568 | 12% | 1.68 | 0.004 | |||||||
高盐-对照 | 568 | 12% | 2.40 | 0.015 | ||||||||
46. 基本转录因子3亚型1 Basic transcription factor 3 isoform 1 | 低盐-对照 | 264 | 13% | -2.81 | 0.004 | |||||||
高盐-低盐 | 264 | 13% | 2.82 | 0.001 | ||||||||
48. GTP结合核蛋白Ran/TC4 GTP-binding nuclear protein Ran/TC4 | 高盐-低盐 | 388 | 27% | 1.80 | 0.018 | |||||||
未知 蛋白 | 25. predicted protein | 高盐-对照 | 128 | 8% | -1.55 | 0.004 | ||||||
41. unknown | 高盐-低盐 | 344 | 12% | 1.87 | 0.001 |
[1] | 赵可夫, 李法曾, 樊守金, 等. 中国的盐生植物[J]. 植物学通报, 1999(3):201-207. |
[2] | Wang X, Chang L, Wang B, et al. Comparative Proteomics of Thellungiella halophila Leaves from Plants Subjected to Salinity Reveals the Importance of Chloroplastic Starch and Soluble Sugars in Halophyte Salt Tolerance[J]. 2013,12(8):2174-2195. |
[3] | 杨真, 王宝山. 中国盐渍土资源现状及改良利用对策[J]. 山东农业科学, 2015,47(4):125-130. |
[4] | 钮力亚, 王伟, 王伟伟, 等. 盐胁迫下小麦品种生理指标的变化规律[J]. 中国农学通报, 2019,35(2):1-4. |
[5] | 何正付, 王凤立, 柏新盛. 盐胁迫下大豆木质部溶液中Na+和K+含量变化分析[J]. 安徽农学通报, 2019,25(9):17-18. |
[6] | Abd El-Hameid Asmaa R, Ahmed M A, Gamal El-Din Karima M, et al. Role of Salicylic Acid to Improve Physiological Characters and Bio-Chemical Markers of Soybean (Glycine max L.) Under Sea Salt Stress[J]. Springer International Publishing, 2017,11(4). |
[7] | 谷俊, 耿贵, 李冬雪, 等. 盐胁迫对植物各营养器官形态结构影响的研究进展[J]. 中国农学通报, 2017,33(24):62-67. |
[8] | 谷娇娇, 胡博文, 贾琰, 等. 盐胁迫对水稻根系相关性状及产量的影响[J]. 作物杂志, 2019(4):176-182. |
[9] | Ashraf M, Foolad M R. Roles of glycine betaine and proline in improving plant abiotic stress resistance[J]. Elsevier B.V., 2005,59(2). |
[10] | Muchate N S, Nikalje G C, Rajurkar N S, et al. Plant Salt Stress: Adaptive Responses, Tolerance Mechanism and Bioengineering for Salt Tolerance[J]. Springer US, 2016,82(4). |
[11] | 陈莉, 刘连涛, 马彤彤, 等. 褪黑素对盐胁迫下棉花种子抗氧化酶活性及萌发的影响[J]. 棉花学报, 2019,31(5):438-447. |
[12] | Hu Q, Liu R, Journal JLJOAL. Effects of Bacillus subtilis QM3 on Germination and Antioxidant Enzymes Activities of Wheat Seeds under Salt Stress[J]. 2019,06(3):1-9. |
[13] | 龚春梅. 干旱地区水分梯度下植物光合碳同化途径适应性变化机制研究[D]. 兰州:兰州大学, 2007. |
[14] | Glenn E P, Brown J J, Blumwald E. Salt Tolerance and Crop Potential of Halophytes[J]. Critical Reviews in Plant Sciences, 1999,18(2):227-255. |
[15] | 陈晓晶, 刘景辉, 杨彦明, 等. 盐胁迫对燕麦叶片生理指标和差异蛋白组学的影响[J]. 作物学报, 2019(9):1431-1439. |
[16] | 马进, 郑钢, 裴翠明, 等. 基于iTRAQ质谱分析技术筛选南方型紫花苜蓿根部响应盐胁迫差异表达蛋白[J]. 农业生物技术学报, 2016,24(4):497-509. |
[17] |
Kovacs I, Ayaydin F, Oberschall A, et al. Immunolocalization of a novel annexin-like protein encoded by a stress and abscisic acid responsive gene in alfalfa[J]. Plant Journal, 1998,15(2):185-197.
doi: 10.1046/j.1365-313x.1998.00194.x URL pmid: 9721677 |
[18] |
Chitteti B R, Peng Z. Proteome and Phosphoproteome Differential Expression under Salinity Stress in Rice (Oryza sativa) Roots[J]. Journal of Proteome Research, 2007,6(5):1718-1727.
URL pmid: 17385905 |
[19] | Li L, Li H, Guo M L, et al. Proteomic and phosphoproteomic analyses of NaCl stress-responsive proteins in Arabidopsis roots[J]. Journal of Plant Interactions, 2014,9(1):396-401. |
[20] | Shawkat M, Nasir M, Chen Q J, et al. Effect of Salt Stress on Photosynthetic Gas Exchange and Chlorophyll Fluorescence Parameters in Alhagi pseudalhagi[J]. Agricultural Science & Technology, 2017,18(3):411-416,423. |
[21] | Zhu Z, Chen J, Zheng H L. Physiological and proteomic characterization of salt tolerance in a mangrove plant, Bruguiera gymnorrhiza (L.) Lam[J]. Tree Physiology, 2012,32(11):1378-1388. |
[22] | 孙张晗, 樊怀福, 杜长霞, 等. 盐胁迫对黄瓜幼苗叶片、韧皮部渗出液和根系抗氧化酶同工酶表达的影响[J]. 浙江农林大学学报, 2016,33(4):652-657. |
[23] |
Zhang W, Bojorquez-Gomez A, Velez D O, et al. A global transcriptional network connecting noncoding mutations to changes in tumor gene expression[J]. Nature Genetics, 2018,50(4):613-620.
doi: 10.1038/s41588-018-0091-2 URL pmid: 29610481 |
[24] | Olina A V, Kulbachinskiy A V, Aravin A A, et al. Argonaute Proteins and Mechanisms of RNA Interference in Eukaryotes and Prokaryotes[J]. Biochemistry (Moscow), 2018,83(5):483-497. |
[25] | 赵金玲. 拟南芥应答盐胁迫ERF基因的筛选及功能分析[D]. 哈尔滨:东北林业大学, 2016. |
[26] |
Yu Y, Chakravorty D, Assmann S M. The G protein β subunit, AGB1, interacts with FERONIA in RALF1-regulated stomatal movement[J]. Plant Physiology, 2018,176(3):2426-2440.
URL pmid: 29301953 |
[27] | 杨磊, 赵红桃, 王志娟, 等. 拟南芥DA1-Related Protein 2基因参与调控植物对盐胁迫的响应[J]. 中国生态农业学报, 2014,22(1):63-71. |
[28] | 韩立民, 刘炳磊. 中国盐土农业发展存在问题及对策[J]. 浙江海洋学院学报:人文科学版, 2014,031(004):1-5. |
[29] |
Wang Y, Stevanato P, Yu L, et al. The physiological and metabolic changes in sugar beet seedlings under different levels of salt stress[J]. J Plant Res., 2017,130(6):1079-1093.
doi: 10.1007/s10265-017-0964-y URL pmid: 28711996 |
[30] | 彭春雪, 耿贵, 於丽华, 等. 不同浓度钠对甜菜生长及生理特性的影响[J]. 植物营养与肥料学报, 2014,000(002):459-465. |
[31] | 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000. |
[32] | Zhang H X, Zhang G M, Lu X T, et al. Salt tolerance during seed germination and early seedling stages of 12 halophytes[J]. plant & soil, 2015,388(1-2):229-241. |
[33] |
Radanielson A M, Angeles O, Li T, et al. Describing the physiological responses of different rice genotypes to salt stress using sigmoid and piecewise linear functions[J]. Field Crops Research, 2018,220:46-56.
doi: 10.1016/j.fcr.2017.05.001 URL pmid: 29725160 |
[34] | Mijiti M, Zhang Y, Zhang C, et al. Physiological and molecular responses of Betula platyphylla Suk to salt stress[J]. Trees, 2017,31(16):1-13. |
[35] | 於丽华, 王宇光, 孙菲, 等. 甜菜萌发—幼苗期不同阶段耐盐能力的研究[J]. 中国农学通报, 2017,33(19):22-28. |
[36] | Bénédicte Lebouteiller, Aurélie Gousset-Dupont, Pierre J N, et al. Physiological impacts of modulating phosphoenolpyruvate carboxylase levels in leaves and seeds of Arabidopsis thaliana[J]. Plant Science, 2007,172(2):0-272. |
[37] |
María-Cruz González, Rosario Sánchez, Cejudo F J. Abiotic stresses affecting water balance induce phosphoenolpyruvate carboxylase expression in roots of wheat seedlings[J]. Planta, 2003,216(6):985-992.
URL pmid: 12687366 |
[38] |
Sofía García-Maurio, José Antonio Monreal, Alvarez R, et al. Characterization of salt stress-enhanced phosphoenolpyruvate carboxylase kinase activity in leaves of Sorghum vulgare: independence from osmotic stress, involvement of ion toxicity and significance of dark phosphorylation[J]. Planta, 2003,216(4):648-655.
URL pmid: 12569407 |
[39] | 赵晋锋, 王高鸿, 杜艳伟, 等. 谷子磷酸烯醇式丙酮酸羧化酶基因(PEPC)对逆境胁迫的响应[J]. 华北农学报, 2019,34(4):67-74. |
[40] | Veronika Doubnerová, Helena Rylavá. What can enzymes of C4 photosynjournal do for C3 plants under stress?[J]. Plant Science, 2011,180(4):0-583. |
[41] | 苟萍, 索菲娅, 马东建. 高等植物铁氧还蛋白的结构与功能[J]. 生命的化学, 2007(1):51-53. |
[42] | 杨超, 胡红涛, 吴平, 等. 高等植物铁氧还蛋白-NADP~+氧化还原酶研究进展[J]. 植物生理学报, 2014(9):1353-1366. |
[43] | 白汝瑾. 盐胁迫下不同盐敏感型番茄蛋白质组分析[D]. 上海:上海交通大学, 2007. |
[44] | Sobhanian H, Razavizadeh R, Nanjo Y, et al. Proteome analysis of soybean leaves, hypocotyls and roots under salt stress[J]. Proteome ence, 2010,8(1):19. |
[45] | 梁燕, 严建萍, 谭湘陵, 等.盐胁迫对水稻幼根乙醇脱氢酶和乙醛脱氢酶基因表达的影响[J]. 湖北农业科学, 2012(13). |
[46] |
Stock D, Gibbons C, Arechaga I, et al. The rotary mechanism of ATP synthase[J]. Current Opinion in Structural Biology, 2001,10(6):672-679.
doi: 10.1016/s0959-440x(00)00147-0 URL pmid: 11114504 |
[1] | JIA Yechun, CHEN Runyi, HE Zelin, NI Hongtao. Abiotic Stress on Sugar Beet: Research Progress [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 33-40. |
[2] | CHEN Yinghua, BAI Ruxiao, WANG Juan, ZHANG Xinjiang, LIU Linghui, LIU Xiaolong, FENG Guorui, WEI Changzhou. Foliar Spraying Uniconazole and Boron: Effects on Yield and Sugar Content of Sugar Beet in Taer Basin [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 41-48. |
[3] | GONG Yongyong, DUANMU Huizi. TIFY Gene Family in Sugar Beet: Whole Genome Identification and Bioinformatics Analysis [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 17-24. |
[4] | WANG Linyu, JIANG Yichen, YU Qingyang, WU Zedong, PI Zhi. Histone Deacetylases (HDACs) Gene Family in Sugar Beet: Identification and Functional Prediction [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 9-16. |
[5] | LIU Qingsong, JIA Yanli, XIAO Yu, GUO Zhiding, JI Mingmei, ZHAO Zhongxiang, HUANG Sufang, YUE Mingqiang, LIU Zhen, YAN Xudong, XU Yupeng. Effects of Salt Stress on Physiological and Growth Traits of Alfalfa [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 96-101. |
[6] | DENG Yushuai, WANG Yuguang, YU Lihua, GENG Gui. Effects of Waterlogging Stress on Growth and Photosynthetic Characteristics of Sugar Beet Seedlings Under Different Soil Salinity and Alkalinity [J]. Chinese Agricultural Science Bulletin, 2022, 38(7): 18-23. |
[7] | ZHANG Yuyang, ZHOU Xue, LIU Lingyi, XU Wujun, REN Xuqin, WANG Guanglong, XIONG Aisheng. Garlic Chitinase Gene AsCHI1: Identification and Its Response to Salt Stress [J]. Chinese Agricultural Science Bulletin, 2022, 38(5): 23-29. |
[8] | LI Sen, FENG Di, ZHANG Jingmin, ZHU Haiyan, PENG Dianliang, WANG Zhihe, WANG Qinqin. Effects of Fulvic Acid Potassium on Germination and Seedling Growth of Cherry Radish Under NaCl Solution Hydroponics [J]. Chinese Agricultural Science Bulletin, 2022, 38(5): 48-53. |
[9] | ZHAI Caijiao, ZHANG Jiao, CUI Shiyou, CHEN Pengjun. Effects of Salt Stress on the Panicle Traits and Yield Components of Rice Cultivars [J]. Chinese Agricultural Science Bulletin, 2022, 38(4): 1-9. |
[10] | YI Jiawen, FENG Di, ZHU Wei, QI Na, TENG Fengkui, LU Xiaoyin. Salt Tolerance of Rice Varieties at Germination Stage: A Comparative Study [J]. Chinese Agricultural Science Bulletin, 2022, 38(33): 10-14. |
[11] | LIU Na, HU Huabing, WANG Ronghua, LIU Xiaoyue, LIU Zhaoyang, LIU Xiaohan, WANG Maoqian. Methanol Aging Treatment: Effect on Germination of Sugar Beet Seeds [J]. Chinese Agricultural Science Bulletin, 2022, 38(33): 28-33. |
[12] | WANG Yang, ZHANG Rui, ZHOU Yuqing, LIU Yonghao, SHAHID Hussain, LIU Gaosheng, DAI Qigen. Analysis of Research Situation of Rice Salt Tolerance in China Based on Bibliometrics [J]. Chinese Agricultural Science Bulletin, 2022, 38(31): 147-153. |
[13] | ZHAO Yaru, PI Zhi, LIU Rui, MA Yuyan, WU Zedong. Genetic Diversity Analysis of Monogerm Cytoplasmic Male Sterile Lines and Maintainer Lines of Sugar Beet [J]. Chinese Agricultural Science Bulletin, 2022, 38(30): 35-40. |
[14] | DONG Yinzhuang, WANG Gang, YU Lihua, GENG Gui. Effects of Ferrous Stress on Accumulation of Mineral Elements in Sugar Beet Seedlings [J]. Chinese Agricultural Science Bulletin, 2022, 38(3): 11-16. |
[15] | SHI Yang, YIN Xilong, LI Wangsheng, XING Wang. PEG Simulated Drought Stress: Effects on Morphological Indices of Drought-tolerant and Drought-sensitive Sugar Beet Germplasms [J]. Chinese Agricultural Science Bulletin, 2022, 38(29): 45-51. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||