Chinese Agricultural Science Bulletin ›› 2021, Vol. 37 ›› Issue (4): 31-37.doi: 10.11924/j.issn.1000-6850.casb2020-0023
Previous Articles Next Articles
Yuan Hui1(), Du Chaoqun1, Zhao Xiaotao2, Xiao Zhiming3, Zhao Hu1()
Received:
2020-04-21
Revised:
2020-10-21
Online:
2021-02-05
Published:
2021-01-25
Contact:
Zhao Hu
E-mail:953836298@qq.com;2385852743@qq.com
CLC Number:
Yuan Hui, Du Chaoqun, Zhao Xiaotao, Xiao Zhiming, Zhao Hu. A Crown Ratio Model for Cunninghamia lanceolata Plantations Based on Mixed Effect in Hubei[J]. Chinese Agricultural Science Bulletin, 2021, 37(4): 31-37.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2020-0023
数据 | 变量 | 极小值 | 极大值 | 平均值 | 标准差 |
---|---|---|---|---|---|
建模数据(n=500) | 胸径/cm | 7.5 | 39.10 | 16.88 | 5.56 |
树高/m | 6.70 | 23.90 | 13.18 | 3.15 | |
海拔/m | 36 | 1462 | 632.71 | 496.36 | |
坡度/° | 3 | 47 | 19.85 | 10.05 | |
树龄/年 | 6 | 59 | 23.84 | 10.89 | |
每公顷株数/(株/hm2) | 500 | 7050 | 1963.51 | 1168.01 | |
冠长/m | 1.3 | 17.1 | 6.41 | 2.67 | |
冠长率 | 0.12 | 0.92 | 0.48 | 0.14 | |
大于对象树木每公顷断面积/(m2/hm2) | 0 | 45.58 | 15.99 | 10.79 | |
高径比 | 0.46 | 1.14 | 0.81 | 0.12 | |
检验数据(n=215) | 胸径/cm | 7.60 | 34.40 | 14.11 | 6.03 |
树高/m | 6.80 | 21.50 | 11.55 | 2.99 | |
海拔/m | 12 | 1694 | 345.78 | 602.50 | |
坡度/° | 2 | 30 | 10.09 | 9.28 | |
树龄/年 | 8 | 39 | 16.37 | 10.35 | |
每公顷株数/(株/hm2) | 1250.00 | 6467.00 | 3965.09 | 1797.37 | |
冠长/m | 1.90 | 15.10 | 5.81 | 2.45 | |
冠长率 | 0.16 | 0.89 | 0.50 | 0.13 | |
大于对象树木每公顷断面积/(m2/hm2) | 0 | 44.13 | 19.36 | 12.45 | |
高径比 | 0.52 | 1.17 | 0.87 | 0.15 |
数据 | 变量 | 极小值 | 极大值 | 平均值 | 标准差 |
---|---|---|---|---|---|
建模数据(n=500) | 胸径/cm | 7.5 | 39.10 | 16.88 | 5.56 |
树高/m | 6.70 | 23.90 | 13.18 | 3.15 | |
海拔/m | 36 | 1462 | 632.71 | 496.36 | |
坡度/° | 3 | 47 | 19.85 | 10.05 | |
树龄/年 | 6 | 59 | 23.84 | 10.89 | |
每公顷株数/(株/hm2) | 500 | 7050 | 1963.51 | 1168.01 | |
冠长/m | 1.3 | 17.1 | 6.41 | 2.67 | |
冠长率 | 0.12 | 0.92 | 0.48 | 0.14 | |
大于对象树木每公顷断面积/(m2/hm2) | 0 | 45.58 | 15.99 | 10.79 | |
高径比 | 0.46 | 1.14 | 0.81 | 0.12 | |
检验数据(n=215) | 胸径/cm | 7.60 | 34.40 | 14.11 | 6.03 |
树高/m | 6.80 | 21.50 | 11.55 | 2.99 | |
海拔/m | 12 | 1694 | 345.78 | 602.50 | |
坡度/° | 2 | 30 | 10.09 | 9.28 | |
树龄/年 | 8 | 39 | 16.37 | 10.35 | |
每公顷株数/(株/hm2) | 1250.00 | 6467.00 | 3965.09 | 1797.37 | |
冠长/m | 1.90 | 15.10 | 5.81 | 2.45 | |
冠长率 | 0.16 | 0.89 | 0.50 | 0.13 | |
大于对象树木每公顷断面积/(m2/hm2) | 0 | 44.13 | 19.36 | 12.45 | |
高径比 | 0.52 | 1.17 | 0.87 | 0.15 |
随机参数 | 参数个数 | AIC | BIC | log-likelihood | LRT | P |
---|---|---|---|---|---|---|
无 | 6 | -975.154 | -867.5326 | 489.7412 | ||
a | 7 | -1005.499 | -961.0544 | 510.7494 | 10.32 | 0.0221 |
a、f | 9 | -1006.777 | -968.92 | 513.3886 | 9.46 | 0.0314 |
b、c、e | 12 | -1000.393 | -940.9538 | 513.1967 | ||
a、b、c、e | 16 | -991.157 | -913.4282 | 512.5785 |
随机参数 | 参数个数 | AIC | BIC | log-likelihood | LRT | P |
---|---|---|---|---|---|---|
无 | 6 | -975.154 | -867.5326 | 489.7412 | ||
a | 7 | -1005.499 | -961.0544 | 510.7494 | 10.32 | 0.0221 |
a、f | 9 | -1006.777 | -968.92 | 513.3886 | 9.46 | 0.0314 |
b、c、e | 12 | -1000.393 | -940.9538 | 513.1967 | ||
a、b、c、e | 16 | -991.157 | -913.4282 | 512.5785 |
模型 | a | b | c | d | e | f | Bias | RMSE | R2 | |
---|---|---|---|---|---|---|---|---|---|---|
基础模型 | 估计值 | 1.055 | -0.693 | -0.056 | 0.001 | -0.01 | -0.121 | -0.0862 | 0.1458 | 0.3231 |
标准误 | 0.3602 | 0.2863 | 0.0155 | 0.0002 | 0.0021 | 0.0438 | ||||
P | 0.0224 | 0.0574 | 0.0435 | 0.0006 | 0.0002 | 0.0198 | ||||
混合模型 | 估计值 | 1.078 | -0.5319 | -0.0342 | 0.0006 | -0.0121 | -0.0347 | -0.0095 | 0.1175 | 0.5417 |
标准误 | 0.0462 | 0.2827 | 0.0163 | 0.0002 | 0.0023 | 0.0558 | ||||
P | 0.0206 | 0.0605 | 0.0369 | 0.0158 | 0 | 0.5341 | ||||
方差-协方差 | σ2=0.1032、σ2a=0.1264、σ2f=0.0642、σaf=0.0822 |
模型 | a | b | c | d | e | f | Bias | RMSE | R2 | |
---|---|---|---|---|---|---|---|---|---|---|
基础模型 | 估计值 | 1.055 | -0.693 | -0.056 | 0.001 | -0.01 | -0.121 | -0.0862 | 0.1458 | 0.3231 |
标准误 | 0.3602 | 0.2863 | 0.0155 | 0.0002 | 0.0021 | 0.0438 | ||||
P | 0.0224 | 0.0574 | 0.0435 | 0.0006 | 0.0002 | 0.0198 | ||||
混合模型 | 估计值 | 1.078 | -0.5319 | -0.0342 | 0.0006 | -0.0121 | -0.0347 | -0.0095 | 0.1175 | 0.5417 |
标准误 | 0.0462 | 0.2827 | 0.0163 | 0.0002 | 0.0023 | 0.0558 | ||||
P | 0.0206 | 0.0605 | 0.0369 | 0.0158 | 0 | 0.5341 | ||||
方差-协方差 | σ2=0.1032、σ2a=0.1264、σ2f=0.0642、σaf=0.0822 |
[1] | Hein S, Weiskittel A R, Kohnle U. Branch characteristics of widely spaced Douglas-fir in south-western Germany: comparisons of modelling approaches and geographic regions[J]. Forest Ecology and Management, 2008,256(5):1064-1079. |
[2] | 余雪标, 徐大平. 连栽桉树人工林生长特性和树冠结构特征[J]. 林业科学, 2000(z1). |
[3] | 斯蒂芬·帕拉帝. 木本植物生理学[M]. 北京: 科学出版社, 2011: 261 |
[4] | Bella I E. A New Competition Model for Individual Trees[J]. Forest Science, 1971,17(17):364-372. |
[5] | Jr J A K, Maguire D A, Hann D W. Longevity and duration of radial growth in Douglas-fir branches[J]. Canadian Journal of Forest Research, 1990,20(11):1690-1695. |
[6] | Leites L P, Robinson A P, Crookston N L. Accuracy and equivalence testing of crown ratio models and assessment of their impact on diameter growth and basal area increment predictions of two variants of the Forest Vegetation Simulator[J]. Canadian Journal of Forest Research, 2009,39(3):655-665. |
[7] | Cawrse D. The U. S. forest service forest vegetation simulator: modeling forest disturbances using a stand dynamics model[A]. // International Conference on the Efforts in Response to Forest-related Natural Disasters-forest Science Frum[C]. 2010. |
[8] | Bailey J D, Tappeiner J C. Effects of thinning on structural development in 40- to 100-year-old Douglas-fir stands in western Oregon[J]. Forest Ecology & Management, 1998,108(1-2):99-113. |
[9] | 欧建德, 吴志庄. 南方红豆杉修枝后生长与干形动态表现[J]. 浙江农林大学学报, 2017(1):104-111. |
[10] | 袁丛军, 严令斌, 喻理飞, 等. 黔中喀斯特次生林主要经营树种冠形特征及模型拟合[J]. 西部林业科学, 2017,46(4):24-30. |
[11] | Jari Hynynen. predicting tree crown ratio for unthinned and thinned scots pine stands[J]. Canadian Journal of Forest Research, 1995,25(1):57-62 |
[12] | Ward W W. Live Crown Ratio and Stand Density in Young, Even-Aged, Red Oak Stands[J]. Forest Science, 1964,10(1):56-65. |
[13] | Short Iii E A, Burkhart H E. Predicting Crown-Height Increment for Thinned and Unthinned Loblolly Pine Plantations[J]. Forest Science, 1992,38(3):594-610. |
[14] | Hasenauer H, Monserud R A. A crown ratio model for Austrian forests[J]. Forest Ecology and Management, 1996,84(1-3):60. |
[15] |
Liyong F, Huiru Z, Jun L, et al. Multilevel Nonlinear Mixed-Effect Crown Ratio Models for Individual Trees of Mongolian Oak (Quercus mongolica) in Northeast China[J]. Plos One, 2015,10(8):e0133294.
doi: 10.1371/journal.pone.0133294 URL pmid: 26241912 |
[16] | Temesgen H, Lemay V, Mitchell S J. Tree crown ratio models for multi-species and multi-layered stands of southeastern British Columbia[J]. The Forestry Chronicle, 2005,81(1):133-141. |
[17] | Leites L P, Robinson A P, Crookston N L. Accuracy and equivalence testing of crown ratio models and assessment of their impact on diameter growth and basal area increment predictions of two variants of the Forest Vegetation Simulator[J]. Revue Canadienne De Recherche Forestière, 2009,39(3):655-665. |
[18] | Zhao D H, Kane M, Borders B E. Crown Ratio and Relative Spacing Relationships for Loblolly Pine Plantations[J]. Open Journal of Forestry, 2012,2(3):110-115. |
[19] | 卢军, 李凤日, 张会儒, 等. 帽儿山天然次生林主要树种冠长率模型[J]. 林业科学, 2011,47(6):70-76. |
[20] | 郭孝玉. 长白落叶松同龄林树冠率模型构建[A].中国科学技术协会,云南省人民政府.第十六届中国科协年会——分11森林培育技术创新与特色资源产业发展学术研讨会论文集[C]. 中国科学技术协会,云南省人民政府,中国科学技术协会学会学术部, 2014: 7. |
[21] | Wykoff W R. A basal area increment model for individual conifers in the Northern Rocky Mountains[J]. For Sci, 1990,36(4):1077-1104. |
[22] | 王冬至, 张冬燕, 张志东, 等. 基于非线性混合模型的针阔混交林树高与胸径关系[J]. 林业科学, 2016,52(1):30-36. |
[23] | Trincado G, Burkhart H E. A Generalized Approach for Modeling and Localizing Stem Profile Curves[J]. Forest Science, 2006,52(6):670-682. |
[24] | 高慧淋, 董利虎, 李凤日. 基于混合效应的人工落叶松树冠轮廓模型[J]. 林业科学, 2017,53(3):84-93. |
[1] | Pema Rigzin, Dhonyo Dorji, Delek Kunkyi, Dekyi Yangzom, Yeshe Dorji, Penpa Tsring. Constructing the Monitoring Model of High Temperature Damage on Rice by Combining Data from Satellites and Ground Automatic Weather Stations [J]. Chinese Agricultural Science Bulletin, 2023, 39(1): 133-141. |
[2] | ZHOU Xiaohong. The Crop Yield Estimation Model Based on Multiple Regression Analysis [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 152-156. |
[3] | YU Jiayue, CHEN Rao, JIA Tianyu. Farmers’ Satisfaction with Professional Cooperatives and Its Influencing Factors: A Survey of Huairou District in Beijing [J]. Chinese Agricultural Science Bulletin, 2022, 38(6): 141-148. |
[4] | LIANG Changmei, WANG Jianwei, WEN Pengfei, YANG Hua. Modelling of High Voltage Electrostatic Field Induced Total Flavan-3-ols Accumulation in Postharvest Grape Berries [J]. Chinese Agricultural Science Bulletin, 2022, 38(5): 152-156. |
[5] | BAI Wei, HU Yang, HU Qingqing, CUI Jinli, ZHANG Baoying, YANG Sumei. Effect of Main Cultivation Factors on Yield of Oil Sunflower in North Hebei [J]. Chinese Agricultural Science Bulletin, 2022, 38(5): 17-22. |
[6] | ZHANG Yong, XU Zhi, GAO Lifang, DENG Yaqin, WANG Ruixue, WANG Yuyun. Effects of Partial Substitution of Chemical Fertilizer by Organic Fertilizer on Lettuce Yield in Newly Reclaimed Red Soil [J]. Chinese Agricultural Science Bulletin, 2022, 38(5): 79-85. |
[7] | LIU Xian, YANG Hang, LI Jianxiang, YU Jianqian. Multiple Weight Prediction Methods Based on Kumquat Image [J]. Chinese Agricultural Science Bulletin, 2022, 38(34): 138-143. |
[8] | WANG Chujue, LI Ang, LI Luji. Evaluation of Agricultural Water Use Efficiency in the Yellow River Basin Based on Undesirable Output of Grey Water Footprint [J]. Chinese Agricultural Science Bulletin, 2022, 38(31): 105-112. |
[9] | ZHANG Xia, XU Xiumei. Influencing Factors of Agricultural Technology Extension Efficiency——A Case Study of Pingdu City, Shandong Province [J]. Chinese Agricultural Science Bulletin, 2022, 38(30): 135-140. |
[10] | JIANG Feng, YAN Yan, MAI Jiaqi, LIANG Rilang, ZHOU Jiecheng, LI Pingyao, LIU Pengfei. Quality Traits of Sweet Corn: Major Gene +Polygene Genetic Analysis [J]. Chinese Agricultural Science Bulletin, 2022, 38(30): 14-20. |
[11] | CHEN Jianfeng, ZHAO Wenjun, FU Libo, YIN Mei, WANG Zhiyuan, WANG Wei, WANG Yingxue, YANG Yanxian, CHEN Hua. Influence of Fertilization System of Nutrient Critical Value for Optimum Yield of Tobacco on Yield and Quality of Flue-cured Tobacco in Yuxi [J]. Chinese Agricultural Science Bulletin, 2022, 38(28): 1-6. |
[12] | WANG Chunling, YE Caihua, JIANG Jiang. Study on the Prediction Model of the Pollen Initiation Period of Woody Plants in Beijing [J]. Chinese Agricultural Science Bulletin, 2022, 38(28): 89-97. |
[13] | JIANG Yangyang, LI Haiyang, LI Zhengrong, CUI Kai, WU Minglin, ZHOU Beibei, WANG Lin, WU Duosheng. Aquaculture Wastewater Treatment in Anhui Province: Typical Models and Development Suggestions [J]. Chinese Agricultural Science Bulletin, 2022, 38(26): 139-143. |
[14] | WEI Bingqing, NIU Yanlei, XIN Yiru, CHEN Xiaofeng. Design of Minitype Hydroponic Device for Balcony Based on Kano-QFD Model [J]. Chinese Agricultural Science Bulletin, 2022, 38(22): 134-138. |
[15] | ZHANG Yufeng, SUN Jiangtao, LI Qingsong, FAN Liyao, WEN Qian. The Willingness and Influencing Factors of Farmers’ Homestead Exit in the Agricultural Area of Eastern Henan: An Example of Fugou County [J]. Chinese Agricultural Science Bulletin, 2022, 38(2): 150-156. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||