Chinese Agricultural Science Bulletin ›› 2021, Vol. 37 ›› Issue (24): 124-132.doi: 10.11924/j.issn.1000-6850.casb2020-0724
Previous Articles Next Articles
Jiang Xueyong1,2(), Yue Yuanchun1, Sun Yangcun1,2, Gao Dongni1,2, Ping Wenxiang1,2, Ge Jingping1,2(
)
Received:
2020-11-30
Revised:
2020-12-28
Online:
2021-08-25
Published:
2021-08-27
Contact:
Ge Jingping
E-mail:jiangxueyong7@126.com;gejingping@126.com
CLC Number:
Jiang Xueyong, Yue Yuanchun, Sun Yangcun, Gao Dongni, Ping Wenxiang, Ge Jingping. Interspecific Relationship of Lactobacillus paracasei Co-cultured with Bacillus sp. Affects Bacteriocin Production[J]. Chinese Agricultural Science Bulletin, 2021, 37(24): 124-132.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2020-0724
比例/时间 | 0h | 4h | 8h | 12h | 24h | 36h | 48h | 60h |
---|---|---|---|---|---|---|---|---|
3%:1% | 1.750 | 0.875 | 2.000 | 5.923 | 8.250 | 3.682 | 1.724 | 2.563 |
5%:1% | 0.556 | 0.444 | 0.900 | 8.429 | 6.444 | 5.947 | 5.957 | 3.829 |
5%:2% | 0.556 | 0.556 | 0.600 | 0.786 | 4.389 | 4.880 | 4.044 | 2.714 |
比例/时间 | 0h | 4h | 8h | 12h | 24h | 36h | 48h | 60h |
---|---|---|---|---|---|---|---|---|
3%:1% | 1.750 | 0.875 | 2.000 | 5.923 | 8.250 | 3.682 | 1.724 | 2.563 |
5%:1% | 0.556 | 0.444 | 0.900 | 8.429 | 6.444 | 5.947 | 5.957 | 3.829 |
5%:2% | 0.556 | 0.556 | 0.600 | 0.786 | 4.389 | 4.880 | 4.044 | 2.714 |
菌株/时间 | 0h | 4h | 8h | 12h | 24h | 36h | 48h | 60h |
---|---|---|---|---|---|---|---|---|
B. licheniformis | 0 | 0.13 | 1.80 | 4.00 | 3.57 | 3.02 | 2.93 | 4.00 |
B. megaterium | 1.00 | 0.13 | 0.80 | 1.37 | 3.65 | 2.23 | 1.76 | 1.88 |
B. pumilus | 0.18 | 0.10 | 0.32 | 2.70 | 5.50 | 6.00 | 3.46 | 4.88 |
B. cereus | 0.76 | 0.29 | 0.42 | 0.40 | 0.40 | 1.05 | 1.01 | 1.02 |
B. laterosporus | 0.45 | 0.15 | 0.43 | 1.55 | 1.30 | 7.50 | 1.55 | 1.24 |
B. thuringiensis | 0.75 | 0.33 | 1.20 | 1.50 | 2.33 | 1.48 | 1.26 | 1.14 |
菌株/时间 | 0h | 4h | 8h | 12h | 24h | 36h | 48h | 60h |
---|---|---|---|---|---|---|---|---|
B. licheniformis | 0 | 0.13 | 1.80 | 4.00 | 3.57 | 3.02 | 2.93 | 4.00 |
B. megaterium | 1.00 | 0.13 | 0.80 | 1.37 | 3.65 | 2.23 | 1.76 | 1.88 |
B. pumilus | 0.18 | 0.10 | 0.32 | 2.70 | 5.50 | 6.00 | 3.46 | 4.88 |
B. cereus | 0.76 | 0.29 | 0.42 | 0.40 | 0.40 | 1.05 | 1.01 | 1.02 |
B. laterosporus | 0.45 | 0.15 | 0.43 | 1.55 | 1.30 | 7.50 | 1.55 | 1.24 |
B. thuringiensis | 0.75 | 0.33 | 1.20 | 1.50 | 2.33 | 1.48 | 1.26 | 1.14 |
[1] |
Bertrand S, Bohni N, Schnee S, et al. Metabolite induction via microorganism co-culture: a potential way to enhance chemical diversity for drug discovery[J]. Biotechnology advances, 2014, 32(6):1180-1204.
doi: 10.1016/j.biotechadv.2014.03.001 pmid: 24651031 |
[2] |
Chanos P, Mygind T. Co-culture-inducible bacteriocin production in lactic acid bacteria[J]. Applied microbiology and biotechnology, 2016, 100(10):4297-4308.
doi: 10.1007/s00253-016-7486-8 URL |
[3] | Xu D, Wang L, Du C. Progress in microbial co-culture--A review[J]. Acta Microbiologica Sinica, 2015, 55(9):1089-1096. |
[4] | Bertrand S, Azzollini A, Schumpp O, et al. Fungal co-culture as a new source of bioactive induced metabolites: A MS-based metabolomic study[J]. Planta Medica, 2012. |
[5] |
Marques J D L, Funck G D, Dannenberg G D S, et al. Bacteriocin-like substances of Lactobacillus curvatus P99: characterization and application in biodegradable films for control of Listeria monocytogenes in cheese[J]. Food Microbiology, 2017, 63(MAY):159-163.
doi: 10.1016/j.fm.2016.11.008 URL |
[6] |
Mtimet N, Trunet C, Mathot A G, et al. Walking dead: Permeabilization of heat-treated Geobacillus stearothermophilus ATCC 12980 spores under growth-preventing conditions[J]. Food Microbiology, 2017, 64(jun.):126-134.
doi: 10.1016/j.fm.2016.12.013 URL |
[7] |
Hu Y, Liu X, Shan C, et al. Novel bacteriocin produced by Lactobacillus alimentarius FM-MM4 from a traditional Chinese fermented meat Nanx Wudl: Purification, identification and antimicrobial characteristics[J]. Food Control, 2017, 77:290-297.
doi: 10.1016/j.foodcont.2017.02.007 URL |
[8] |
Horie M, Koike T, Sugino S, et al. Evaluation of probiotic and prebiotic-like effects of Bacillus subtilis BN on growth of lactobacilli [J]. Journal of General and Applied Microbiology, 2017, 64(1):26-33.
doi: 10.2323/jgam.2017.03.002 URL |
[9] | 徐薇薇, 林永华, 阮晖, 等. 纳豆芽孢杆菌与干酪乳杆菌共发酵制备富含纳豆激酶和吡咯喹啉醌的凝固型酸豆乳[C]. 中国食品科学技术学会第十一届年会论文摘要集, 2014:63-64. |
[10] |
RSsland E, Langsrud T, SRhaug T. Influence of controlled lactic fermentation on growth and sporulation of Bacillus cereus in milk[J]. International Journal of Food Microbiology, 2005, 103(1):69-77.
doi: 10.1016/j.ijfoodmicro.2004.11.027 URL |
[11] |
Karetkin B, Guseva E, Evdokimova S, et al. A quantitative model of Bacillus cereus ATCC 9634 growth inhibition by bifidobacteria for synbiotic effect evaluation[J]. World journal of microbiology & biotechnology, 2019, 35(6):89.
doi: 10.1007/s11274-019-2665-2 URL |
[12] |
Jhan J K, Chang W F, Wang P M, et al. Production of fermented red beans with multiple bioactivities using co-cultures of Bacillus subtilis and Lactobacillus delbrueckii subsp. bulgaricus [J]. LWT - Food Science and Technology, 2015, 63(2):1281-1287.
doi: 10.1016/j.lwt.2015.03.107 URL |
[13] | Ge J, Ping W, Song G, et al. Paracin 1.7, a bacteriocin produced by Lactobacillus paracasei HD1.7 isolated from Chinese cabbage sauerkraut, a traditional Chinese fermented vegetable food[J]. W Sheng Wu Xue Bao, 2009, 49(5):609-616. |
[14] |
Ge J, Sun Y, Xin X, et al. Purification and Partial Characterization of a Novel Bacteriocin Synthesized by Lactobacillus paracasei HD1-7 Isolated from Chinese Sauerkraut Juice[J]. Scientific reports, 2016, 6:19366.
doi: 10.1038/srep19366 URL |
[15] |
Ge J, Fang B, Wang Y, et al. Bacillus subtilis enhances production of Paracin1.7, a bacteriocin produced by Lactobacillus paracasei HD1-7, isolated from Chinese fermented cabbage[J]. Annals of Microbiology, 2014, 64(4):1735-1743.
doi: 10.1007/s13213-014-0817-z URL |
[16] |
Quinto E J, Marín J M, Schaffner DW. Effect of the competitive growth of Lactobacillus sakei MN on the growth kinetics of Listeria monocytogenes Scott A in model meat gravy[J]. Food Control, 2016, 63:34-45.
doi: 10.1016/j.foodcont.2015.11.025 URL |
[17] |
Valerio F, Bellis P D, Lonigro S L, et al. Use of Lactobacillus plantarum fermentation products in bread-making to prevent Bacillus subtilis ropy spoilage[J]. International Journal of Food Microbiology, 2008, 122(3):328-332.
doi: 10.1016/j.ijfoodmicro.2008.01.005 URL |
[18] |
Tabasco R, García-Cayuela T, Peláez C, et al. Lactobacillus acidophilus La-5 increases lactacin B production when it senses live target bacteria[J]. International journal of food microbiology, 2009, 132(2-3):109-116.
doi: 10.1016/j.ijfoodmicro.2009.04.004 pmid: 19411126 |
[19] |
Man L, Meng X, Zhao R, et al. The role of plNC8HK-plnD genes in bacteriocin production in Lactobacillus plantarum KLDS1.0391[J]. International Dairy Journal, 2014, 34(2):267-274.
doi: 10.1016/j.idairyj.2013.08.009 URL |
[20] |
Wu Q Q, You J H, Ahn H J, et al. Changes in growth and survival of Bifidobacterium by coculture with Propionibacterium in soy milk, cow's milk, and modified MRS medium[J]. International Journal of Food Microbiology, 2012, 157(1):65-72.
doi: 10.1016/j.ijfoodmicro.2012.04.013 URL |
[21] |
Chauhan A, Maheshwari D, Bajpai V. Isolation and preliminary characterization of a bacteriocin-producer Bacillus strain inhibiting methicillin resistant Staphylococcus aureus[J]. Acta biologica Hungarica, 2017, 68(2):208-219.
doi: 10.1556/018.68.2017.2.8 pmid: 28605978 |
[22] | 苑婷婷. 产细菌素Paracin1.7菌株群体感应行为初探[D]. 哈尔滨:黑龙江大学, 2010. |
[23] | 易健明, 屈武斌, 张成岗. 实时荧光定量PCR的数据分析方法[J]. 生物技术通讯, 2015, 26(1):140-145. |
[24] | 马艳莉, 段哲, 梁静静, 等. 青方腐乳中丁酸梭菌分离鉴定及与乳酸菌共培养研究[J]. 中国调味品, 2020, 45(09):64-68. |
[25] |
Saxena R K, Dutt K, Agarwal L, et al. A highly thermostable and alkaline amylase from a Bacillus sp. PN5[J]. Bioresource Technology, 2007, 98(2):260-265.
doi: 10.1016/j.biortech.2006.01.016 URL |
[26] |
Ariana M, Hamedi J. Enhanced production of nisin by co-culture of Lactococcus lactis sub sp. lactis and Yarrowia lipolytica in molasses based medium[J]. Journal of biotechnology, 2017, 256:21-26.
doi: S0168-1656(17)31521-3 pmid: 28694185 |
[27] |
Zhu Y, Liu J, Du G, et al. Sporulation and spore stability of Bacillus megaterium enhance Ketogulonigenium vulgare propagation and 2-keto-l-gulonic acid biosynjournal[J]. Bioresource Technology, 2012, 107:399-404.
doi: 10.1016/j.biortech.2011.12.080 URL |
[28] | Fossi B T, Tavea F, Fontem L A, et al. Microbial interactions for enhancement of α-amylase production by Bacillus amyloliquefaciens 04BBA15 and Lactobacillus fermentum 04BBA19[J]. Biotechnol Rep:amst, 2014, 4:99-106. |
[29] |
Tremonte P, Reale A, Renzo T D, et al. Interactions between Lactobacillus sakei and CNC (Staphylococcus xylosus and Kocuria varians) and their influence on proteolytic activity[J]. Letters in Applied Microbiology, 2010, 51(5):586-594.
doi: 10.1111/j.1472-765X.2010.02939.x pmid: 20875035 |
[30] | Mascia T, Gallitelli D. Synergies and antagonisms in virus interactions[J]. Plant ence, 2016, 252:176-192. |
[1] | JIA Yechun, CHEN Runyi, HE Zelin, NI Hongtao. Abiotic Stress on Sugar Beet: Research Progress [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 33-40. |
[2] | YOU Mengyao, WAN Lu, YAN Jiajia, ZHANG He, ZHENG Chunying. Research Progress on Endophytes from Glycyrrhiza uralensis [J]. Chinese Agricultural Science Bulletin, 2022, 38(26): 20-26. |
[3] | CHEN Yunkun, HU Chunyan, ZHANG Zhiyu, ZHAO Yanfang, CAO Hui. Antimicrobial Activity of Extracts from Five Thymelaeaceae Plants Against Seven Plant Pathogenic Fungi [J]. Chinese Agricultural Science Bulletin, 2022, 38(13): 148-156. |
[4] | Zhang Zhedong, Liang Jing, Li Zeyu, Gao Siyu, Qiu Tianyi, Shan Tijiang, Xu Lijian. Litter Fungi in the Boreal Forests and Their Antibacterial Compounds in the Greater Khingan Mountains [J]. Chinese Agricultural Science Bulletin, 2021, 37(6): 104-110. |
[5] | Xie Daolong, Tang Zhi, Li Hongye, Fu Xiaoxia, Wang Fan, Liu Xiaoxia, Qin Zuodong, He Fulin, Luo Ying. GbASR gene from Ginkgo biloba: Cloning, Bioinformatics and Expression Analysis [J]. Chinese Agricultural Science Bulletin, 2021, 37(32): 34-41. |
[6] | Hao Xiaocong, Wang Weiwei, Zhang Fengting, Sun Rui, Fang Zhaofeng, Liu Shan, Cao Zhishen, Zhu Wengen, Zhao Changping, Wang Dezhou, Tang Yimiao. TaHPPR Gene in Wheat: Cloning and Expression Analysis [J]. Chinese Agricultural Science Bulletin, 2021, 37(3): 129-138. |
[7] | Pan Yue, Yang Zhixin, Yang Xiaoli, Wang Xu, Song Gang. The Heterologous Expression and Antibacterial Properties of the Bacteriocin Paracin1.7 in Lactococcus Lactis NZ9000 [J]. Chinese Agricultural Science Bulletin, 2021, 37(26): 15-23. |
[8] | Ma Yue, Yu Bing. nsLTPs Genes Involved in Plant Response to Stress: Research Progress [J]. Chinese Agricultural Science Bulletin, 2021, 37(18): 95-101. |
[9] | Dong Chunyan, Liang Weihong, Cheng Hui, Yu Dongming, Lv Dong, Sun Yanfeng, Miao Chen. Plant Lipoxygenases: Advance of the Function in Stress Response [J]. Chinese Agricultural Science Bulletin, 2020, 36(33): 102-107. |
[10] | Tian Tian, Sun Yanyang, Kang Jie, Song Gang, Gao Dongni, Ge Jingping. The Stimulating Factor Inducing the Production of Paracin1.7: Separation and Purification [J]. Chinese Agricultural Science Bulletin, 2020, 36(32): 17-22. |
[11] | Zou Fengkang, Jia Hailun, Ding Guangzhou, Chen Li. Phosphatidylinositol Transporters Gene SbSEC14 C in Sugarbeet: Cloning and Expression Analysis Under Low Temperature Stress [J]. Chinese Agricultural Science Bulletin, 2020, 36(32): 39-48. |
[12] | Wang Shuang, Li Haiying. Plant E3 Ubiquitin Ligase and Abiotic Stress: Research Progress [J]. Chinese Agricultural Science Bulletin, 2020, 36(29): 47-53. |
[13] | Liu Jingyan, Yan Shuangyong, Zhang Rongxue, Su Jingping, Sun Yue, Sun Linjing. Low Temperature Tolerance of Rice: A Review [J]. Chinese Agricultural Science Bulletin, 2020, 36(27): 1-5. |
[14] | Han Jintao, Guo Junbing, Li Suqing. Interspecific Relationship of Dominant Species in the Subalpine Meadow in Yunding Mountain, Shanxi [J]. Chinese Agricultural Science Bulletin, 2020, 36(27): 66-71. |
[15] | Zhang Yan, Fang Baozhu, Ping Wenxiang, Ge Jingping. The Production of Bacteriocin Paracin1.7 by High-density Culture of Lactobacillus paracasei HD1.7: Condition Optimization [J]. Chinese Agricultural Science Bulletin, 2020, 36(24): 116-124. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||