Chinese Agricultural Science Bulletin ›› 2021, Vol. 37 ›› Issue (24): 31-38.doi: 10.11924/j.issn.1000-6850.casb2020-0517
Previous Articles Next Articles
Wan Yibing(), Tang Lanlan, Zhan Ming(
), Shang Chunhui, Yuan Jiayi, Qin Mingguang
Received:
2020-09-29
Revised:
2020-12-18
Online:
2021-08-25
Published:
2021-08-27
Contact:
Zhan Ming
E-mail:ww1332009@qq.com;zhanming@mail.hzau.edu.cn
CLC Number:
Wan Yibing, Tang Lanlan, Zhan Ming, Shang Chunhui, Yuan Jiayi, Qin Mingguang. Dynamics of Carbon and Nitrogen in Root Exudation and Their Relations with Root Traits in Maize[J]. Chinese Agricultural Science Bulletin, 2021, 37(24): 31-38.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2020-0517
[1] |
Phillips R P, Finzi A C, Bernhardt E S. Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2fumigation[J]. Ecology Letters, 2011, 14(2):187-194.
doi: 10.1111/j.1461-0248.2010.01570.x pmid: 21176050 |
[2] |
Yin H, Li Y, Xiao J, et al. Enhanced root exudation stimulates soil nitrogen transformations in a subalpine coniferous forest under experimentalwarming[J]. Global Change Biology, 2013, 19(7):2158-2167.
doi: 10.1111/gcb.12161 URL |
[3] | Nieder R, Schollmayer G, Richter J. Denitrification in the rooting zone of cropped soils with regard to methodology and climate: A review[J]. Biology and Fertility of Soils, 1989, 8(3):219-226. |
[4] |
Kuzyakov Y, Domanski G. Carbon input by plants into the soil. Review[J]. Journal of Plant Nutrition and Soil Science, 2000, 163(4):421-431.
doi: 10.1002/(ISSN)1522-2624 URL |
[5] |
Kuzyakov Y, Schneckenberger K. Review of estimation of plant rhizodeposition and their contribution to soil organic matter formation[J]. Archives of Agronomy and Soil Science, 2004, 50(1):115-132.
doi: 10.1080/03650340310001627658 URL |
[6] |
Wichern F, Mayer J, Joergensen R G, et al. Rhizodeposition of C and N in peas and oats after 13C-15N double labelling under field conditions[J]. Soil Biology and Biochemistry, 2007, 39(10):2527-2537.
doi: 10.1016/j.soilbio.2007.04.022 URL |
[7] | 杨兰芳, 蔡祖聪. 玉米生长和施氮水平对土壤有机碳更新的影响[J]. 环境科学学报, 2006(02):280-286. |
[8] |
Wichern F, Eberhardt E, Mayer J, et al. Nitrogen rhizodeposition in agricultural crops: Methods, estimates and future prospects[J]. Soil Biology and Biochemistry, 2008, 40(1):30-48.
doi: 10.1016/j.soilbio.2007.08.010 URL |
[9] | 鄢来斌, 马义兵, 张福锁. 根际中碳和氮的输入及转化[J]. 土壤, 1993(5):242-245. |
[10] |
Lynch J M, Whipps J M. Substrate flow in the rhizosphere[J]. Plant and Soil, 1990, 129(1):1-10.
doi: 10.1007/BF00011685 URL |
[11] |
De Nobili M, Contin M, Mondini C, et al. Soil microbial biomass is triggered into activity by trace amounts of substrate[J]. Soil Biology and Biochemistry, 2001, 33(9):1163-1170.
doi: 10.1016/S0038-0717(01)00020-7 URL |
[12] |
Fontaine S, Mariotti A, Abbadie L. The priming effect of organic matter: a question of microbial competition?[J]. Soil Biology and Biochemistry, 2003, 35(6):837-843.
doi: 10.1016/S0038-0717(03)00123-8 URL |
[13] |
Kuzyakov Y. Priming effects: interactions between living and dead organic matter[J]. Soil Biology and Biochemistry, 2010, 42(9):1363-1371.
doi: 10.1016/j.soilbio.2010.04.003 URL |
[14] |
Mayer J, Buegger F, Jensen E S, et al. Estimating N rhizodeposition of grain legumes using a 15N in situ stem labelling method[J]. Soil Biology and Biochemistry, 2003, 35(1):21-28.
doi: 10.1016/S0038-0717(02)00212-2 URL |
[15] | 孙悦, 徐兴良, Yakov K. 根际激发效应的发生机制及其生态重要性[J]. 植物生态学报, 2014, 38(01):62-75. |
[16] | 祝贞科, 沈冰洁, 葛体达, 等. 农田作物同化碳输入与周转的生物地球化学过程[J]. 生态学报, 2016, 36(19):5987-5997. |
[17] | 吴彩霞, 傅华. 根系分泌物的作用及影响因素[J]. 草业科学, 2009, 26(09):24-29. |
[18] |
Badri D V, Vivanco J M. Regulation and function of root exudates[J]. Plant Cell and Environment, 2008, 32(6):666-681.
doi: 10.1111/pce.2009.32.issue-6 URL |
[19] |
Darwent M J, Paterson E, Mcdonald A J S, et al. Biosensor reporting of root exudation from Hordeum vulgare in relation to shoot nitrate concentration[J]. Journal of Experimental Botany, 2003, 54(381):325-334.
pmid: 12493860 |
[20] |
Tuckmantel T, Leuschner C, Preusser S, et al. Root exudation patterns in a beech forest: Dependence on soil depth, root morphology, and environment[J]. Soil Biology and Biochemistry, 2017, 107:188-197.
doi: 10.1016/j.soilbio.2017.01.006 URL |
[21] |
Xiong D, Huang J, Yang Z, et al. The effects of warming and nitrogen addition on fine root exudation rates in a young Chinese-fir stand[J]. Forest Ecology and Management, 2020, 458:117793.
doi: 10.1016/j.foreco.2019.117793 URL |
[22] |
De Graaff M, Six J, Van Kessel C. Elevated CO2 increases nitrogen rhizodeposition and microbial immobilization of root-derived nitrogen[J]. New Phytologist, 2007, 173(4):778-786.
doi: 10.1111/nph.2007.173.issue-4 URL |
[23] |
Sun L, Ataka M, Kominami Y, et al. Relationship between fine-root exudation and respiration of two Quercus species in a Japanese temperate forest[J]. Tree Physiology, 2017, 37(8):1011-1020.
doi: 10.1093/treephys/tpx026 URL |
[24] |
Bowsher A W, Evans S E, Tiemann L K, et al. Effects of soil nitrogen availability on rhizodeposition in plants: a review[J]. Plant and Soil, 2018, 423(1):59-85.
doi: 10.1007/s11104-017-3497-1 URL |
[25] |
Xu J G, Juma N G. Relations of shoot C, root C and root length with root-released C of two barley cultivars and the decomposition of root-released C in soil[J]. Canadian Journal of Soil Science, 1994, 74(1):17-22.
doi: 10.4141/cjss94-002 URL |
[26] |
Groleaurenaud V, Plantureux S, Guckert A. Influence of plant morphology on root exudation of maize subjected to mechanical impedance in hydroponic conditions[J]. Plant and Soil, 1998, 201(2):231-239.
doi: 10.1023/A:1004316416034 URL |
[27] | 李淑娅, 田少阳, 袁国印, 等. 长江中游不同玉稻种植模式产量及资源利用效率的比较研究[J]. 作物学报, 2015, 41(10):1537-1547. |
[28] | Szoboszlay M. Studies on the effects of plant variety and root exudate compounds on the soil microbial community[D]. University of Kentucky, 2015. |
[29] | 王学奎, 黄见良. 植物生理生化实验原理与技术[M]. 北京: 高等教育出版社, 2015:202-204. |
[30] |
Weintraub M N, Scott-Denton L E, Schmidt S K, et al. The effects of tree rhizodeposition on soil exoenzyme activity, dissolved organic carbon, and nutrient availability in a subalpine forest ecosystem[J]. Oecologia, 2007, 154(2):327-338.
pmid: 17657512 |
[31] | 何敏毅, 孟凡乔, 史雅娟, 等. 用13C脉冲标记法研究玉米光合碳分配及其向地下的输入[J]. 环境科学, 2008,(02):2446-2453. |
[32] |
Meng F, Dungait J A J, Zhang X, et al. Investigation of photosynthate-C allocation 27 days after 13C-pulse labeling of Zea mays L. at different growth stages[J]. Plant and Soil, 2013, 373(1):755-764.
doi: 10.1007/s11104-013-1841-7 URL |
[33] | 孙昭安, 陈清, 韩笑, 等. 13C脉冲标记法定量冬小麦光合碳分配及其向地下的输入[J]. 环境科学, 2018, 39(6):2837-2844. |
[34] | 申建波, 张福锁, 毛达如. 根际微生态系统中的碳循环[J]. 植物营养与肥料学报, 2001(2):232-240. |
[35] |
Jensen E S. Rhizodeposition of N by pea and barley and its effect on soil N dynamics[J]. Soil Biology and Biochemistry, 1996, 28(1):65-71.
doi: 10.1016/0038-0717(95)00116-6 URL |
[36] |
Jones D L, Hodge A, Kuzyakov Y. Plant and mycorrhizal regulation of rhizodeposition[J]. New Phytologist, 2004, 163(3):459-480.
doi: 10.1111/nph.2004.163.issue-3 URL |
[37] |
Meier I C, Tuckmantel T, Heitkotter J, et al. Root exudation of mature beech forests across a nutrient availability gradient: the role of root morphology and fungal activity[J]. New Phytologist, 2020, 226(2):583-594.
doi: 10.1111/nph.16389 pmid: 31868933 |
[38] |
Paterson E, Sim A. Effect of nitrogen supply and defoliation on loss of organic compounds from roots of Festuca rubra[J]. Journal of Experimental Botany, 2000, 51(349):1449-1457.
pmid: 10944159 |
[39] |
Ma Z, Guo D, Xu X, et al. Evolutionary history resolves global rganization of root functional traits[J]. Nature, 2018, 555(7694):94-97.
doi: 10.1038/nature25783 URL |
[40] | Karst J, Gaster J, Wiley E, et al. Stress differentially causes roots of tree seedlings to exude carbon[J]. Tree Physiology, 2016, 37(2):154-164. |
[41] |
Dilkes N B, Jones D L, Farrar J. Temporal dynamics of carbon partitioning and rhizodeposition in wheat[J]. Plant Physiology, 2004, 134(2):706-715.
pmid: 14764904 |
[42] |
Farrar J, Hawes M C, Jones D L, et al. How roots control the flux of carbon to the rhizosphere[J]. Ecology, 2003, 84(4):827-837.
doi: 10.1890/0012-9658(2003)084[0827:HRCTFO]2.0.CO;2 URL |
[43] | 郭婉玑, 张子良, 刘庆, 等. 根系分泌物收集技术研究进展[J]. 应用生态学报, 2019, 30(11):3951-3962. |
[44] |
Li X, Dong J, Chu W, et al. Adsorption efficiency of a continuous trapping system and its use for the collection of root exudates from cucumber[J]. Journal of Plant Nutrition and Soil Science, 2015, 178(6):963-975.
doi: 10.1002/jpln.201500294 URL |
[45] |
Puschenreiter M, Wenzel W W, Wieshammer G, et al. Novel micro-suction-cup design for sampling soil solution at defined distances from roots[J]. Journal of Plant Nutrition and Soil Science, 2005, 168(3):386-391.
doi: 10.1002/(ISSN)1522-2624 URL |
[46] |
Wadhwa K, Narula N. A novel technique to collect root exudates from mustard (Brassica juncea)[J]. Journal of Basic Microbiology, 2012, 52(5):613-615.
doi: 10.1002/jobm.201100407 pmid: 22144042 |
[1] | DUAN Qingqing, HAN Meimei, TAN Yueqiang, ZHANG Zikun. Effects of Supplemental Light Quality and Duration on the Growth and Carbon Metabolism of Leaves of Greenhouse-grown Sweet Pepper [J]. Chinese Agricultural Science Bulletin, 2023, 39(1): 37-44. |
[2] | ZHOU Dongdong, ZHANG Jun, GE Mengjie, LIU Zhonghong, ZHU Xiaohuan, LI Chunyan. Effects of Different Nitrogen Treatments on Grain Yield, Nitrogen Utilization Efficiency and Quality of Late-sowing Wheat ‘Huaimai 36’ Following Rice [J]. Chinese Agricultural Science Bulletin, 2023, 39(1): 1-7. |
[3] | WANG Fuyu, CHEN Guiju, SUN Leiming, HUANG Ling, SHAO Minmin, ZHAO Kai, YANG Benzhou, ZHANG Yudan, YAN Lu, WANG Lin. Interaction Between Tillage Modes and Nitrogen Application Rates: Effects on the Growth, Yield and Quality of Wheat [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 20-26. |
[4] | JI Kun, WANG Bin, ZHAO Bowen, XUE Hao, WU Jianmin, ZHU Xiaojian, WANG Yixin, ZHAO Haijun, HAN Zanping. Different Maize Germplasm Materials: Grey Correlation Analysis of Plant and Ear-kernel Traits [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 27-32. |
[5] | HONG Bo, ZHANG Ze, ZHANG Qiang, MA Yiru, YI Xiang, LV Xin. The Nitrogen Content in Cotton Leaves: Estimation Based on Digital Image [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 49-55. |
[6] | LI Xinghua, WANG Huan, ZHANG Sheng, CAI Xingxing, ZHOU Qiang, ZHOU Nan. Nitrogen Application Rate and Mode: Effects on Yield and Dry Matter Accumulation and Transport After Flowering of Late Indica Rice [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 6-13. |
[7] | ZHAO Shuangmei, LIU Xianbin, LI Hongmei, DONG Wencai, SHEN Jianping, BAO Jinmei, LIANG Fang, LU Mei. Distributional Characteristics of Soil Carbon in Moist Evergreen Broad-leaved Forest in Ailao Mountains of Yunnan Province [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 88-95. |
[8] | FU Yanyan, LI Yunfeng, HAN Dong, MA Shuqing. Water Surplus and Deficit of Maize Growing Season and Its Effect on Yield in Major Grain Producing Areas of Jilin Province [J]. Chinese Agricultural Science Bulletin, 2022, 38(7): 99-105. |
[9] | ZHANG Hongfen, YANG Lijie, ZHAO Yujuan, ZHANG Feng. Strong Cool Summer in East Gansu in 2020: Climate Characteristics and the Impact on Agriculture [J]. Chinese Agricultural Science Bulletin, 2022, 38(5): 117-123. |
[10] | BAI Wei, HU Yang, HU Qingqing, CUI Jinli, ZHANG Baoying, YANG Sumei. Effect of Main Cultivation Factors on Yield of Oil Sunflower in North Hebei [J]. Chinese Agricultural Science Bulletin, 2022, 38(5): 17-22. |
[11] | WANG Yan, ZHU Kaidi, SUN Hongren, ZHANG Jiping, LV Yucai, WANG Jian. Abundance-deficiency Index of Soil Nutrients and Appropriate Fertilizer Application Rates for Apple Planting in China: A Preliminary Study [J]. Chinese Agricultural Science Bulletin, 2022, 38(5): 69-78. |
[12] | ZHU Xiaocong. Spatial and Temporal Variation Characteristics of Vegetation Productivity in Fen River Basin [J]. Chinese Agricultural Science Bulletin, 2022, 38(5): 86-93. |
[13] | LI Rui, SHANG Xiao, SHANG Chunshu, CHANG Lifang, YAN Lei, BAI Jianrong. 224 Maize Inbred Lines from Shanxi: Genetic Structure and Genetic Relationships Based on SSR Markers by Fluorescence Detection [J]. Chinese Agricultural Science Bulletin, 2022, 38(5): 9-16. |
[14] | ZHOU Zhongwen, ZHANG Moucao, LIU Ying, LIU Donghui, ZHANG Hongni, ZHANG Junlin, HAN Bo. The Influence of Meteorological Factors on Grain Filling Speed of Spring Maize in the Plateau Area of Eastern Gansu [J]. Chinese Agricultural Science Bulletin, 2022, 38(5): 94-98. |
[15] | WANG Hui, LU Xinhai, DU Meifang, ZHANG Qi. Spatio-temporal Characteristics of Extreme Heat During Summer Maize Growing Season in Haihe Plain from 1960 to 2019 [J]. Chinese Agricultural Science Bulletin, 2022, 38(4): 62-68. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||