Chinese Agricultural Science Bulletin ›› 2022, Vol. 38 ›› Issue (5): 23-29.doi: 10.11924/j.issn.1000-6850.casb2021-0275
Previous Articles Next Articles
ZHANG Yuyang1(), ZHOU Xue1, LIU Lingyi1, XU Wujun2, REN Xuqin1, WANG Guanglong1(
), XIONG Aisheng3
Received:
2021-03-18
Revised:
2021-06-13
Online:
2022-02-15
Published:
2022-03-17
Contact:
WANG Guanglong
E-mail:zhangyuyang0415@163.com;guanglongwang@hyit.edu.cn
CLC Number:
ZHANG Yuyang, ZHOU Xue, LIU Lingyi, XU Wujun, REN Xuqin, WANG Guanglong, XIONG Aisheng. Garlic Chitinase Gene AsCHI1: Identification and Its Response to Salt Stress[J]. Chinese Agricultural Science Bulletin, 2022, 38(5): 23-29.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2021-0275
[1] |
ALI S, GANAI B A, KAMILI A N, et al. Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance[J]. Microbiologica research, 2018, 212-213:29-37.
doi: 10.1016/j.micres.2018.04.008 URL |
[2] |
COLLINGE D B, KRAGH K M, MIKKELSEN J D, et al. Plant chitinases[J]. Plant journal, 1993, 3(1):31-40.
doi: 10.1046/j.1365-313X.1993.t01-1-00999.x URL |
[3] | OYELEYE A, NORMI Y M. Chitinase: diversity, limitations, and trends in engineering for suitable applications[J]. Bioscience reports, 2018, 38(4): BSR2018032300. |
[4] |
MATHEW G M, MADHAVAN A, ARUN K B, et al. Thermophilic chitinases: structural, functional and engineering attributes for industrial applications[J]. Applied biochemistry and biotechnology, 2021, 193(1):142-164.
doi: 10.1007/s12010-020-03416-5 URL |
[5] | 郭林霞, 董旋, 赵德刚. 转杜仲几丁质酶基因EuCHIT1番茄提高对灰霉病的抗性[J]. 植物生理学报, 2016, 52(5):703-714. |
[6] |
ZHANG C W, HUANG M Y, SANG X C, et al. Association between sheath blight resistance and chitinase activity in transgenic rice plants expressing McCHIT1 from bitter melon[J]. Transgenic research, 2019, 28(3-4):381-390.
doi: 10.1007/s11248-019-00158-x URL |
[7] |
DING X, GOPALAKRISHNAN B, JOHNSON L B, et al. Insect resistance of transgenic tobacco expressing an insect chitinase gene[J]. Transgenic research, 1998, 7(2):77-84.
doi: 10.1023/A:1008820507262 URL |
[8] | 罗亮. 棉花几丁质酶基因Ghchi6的抗蚜功能研究[D]. 荆州:长江大学, 2017:24-41. |
[9] | 王媛. 兴安落叶松几丁质酶基因的功能分析[D]. 呼和浩特:内蒙古农业大学, 2018:12-26. |
[10] |
AHMED N U, PARK J I, JUNG H J, et al. Molecular characterization of stress resistance-related chitinase genes of Brassica rapa[J]. Plant physiology and biochemistry, 2012, 58:106-115.
doi: 10.1016/j.plaphy.2012.06.015 URL |
[11] |
KONG Q, MOSTAFA H H A, YANG W, et al. Comparative transcriptome profiling reveals that brassinosteroid-mediated lignification plays an important role in garlic adaption to salt stress[J]. Plant physiology and biochemistry, 2021, 158:34-42.
doi: 10.1016/j.plaphy.2020.11.033 URL |
[12] |
QIU Z, ZHENG Z, ZHANG B, et al. Formation, nutritional value, and enhancement of characteristic components in black garlic: A review for maximizing the goodness to humans[J]. Comprehensive reviews in food science and food safety, 2020, 19(2):801-834.
doi: 10.1111/crf3.v19.2 URL |
[13] | 梁志乐, 尚珂含, 王立辉, 等. 大蒜谷胱甘肽硫转移酶基因AsGST的克隆及其对盐胁迫的响应[J]. 核农学报, 2019, 33(6):1088-1095. |
[14] |
WANG G L, REN X Q, LIU J X, et al. Transcript profiling reveals an important role of cell wall remodeling and hormone signaling under salt stress in garlic[J]. Plant physiology and biochemistry, 2019, 135:87-98.
doi: 10.1016/j.plaphy.2018.11.033 URL |
[15] |
WANG G, TIAN C, WANG Y, et al. Selection of reliable reference genes for quantitative RT-PCR in garlic under salt stress[J]. PeerJ, 2019, 7:e7319.
doi: 10.7717/peerj.7319 URL |
[16] |
LIVAK K J, SCHMITTGEM T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Methods, 2001, 25:402-408.
doi: 10.1006/meth.2001.1262 URL |
[17] |
ASAKURA H, YAMAKAWA T, TAMURA T, et al. Transcriptomic and metabolomic analyses provide insights into the upregulation of fatty acid and phospholipid metabolism in tomato fruit under drought stress[J]. Journal of agricultural and food chemistry, 2021, 69(9):2894-2905.
doi: 10.1021/acs.jafc.0c06168 URL |
[18] |
JIN J, LI K, QIN J, et al. The response mechanism to salt stress in Arabidopsis transgenic lines over-expressing of GmG6PD[J]. Plant physiology and biochemistry, 2021, 162:74-85.
doi: 10.1016/j.plaphy.2021.02.021 URL |
[19] |
WANG W, DU J, CHEN L, et al. Transcriptomic, proteomic, and physiological comparative analyses of flooding mitigation of the damage induced by low-temperature stress in direct seeded early indica rice at the seedling stage[J]. BMC genomics, 2021, 22(1):176.
doi: 10.1186/s12864-021-07458-9 URL |
[20] |
KESARI P, PATIL D N, KUMAR P, et al. Structural and functional evolution of chitinase-like proteins from plants[J]. Proteomics, 2015, 15(10):1693-1705.
doi: 10.1002/pmic.201400421 URL |
[21] |
BHATTACHARYA D, NAGPURE A, Gupta R K. Bacterial chitinases: properties and potential[J]. Critical reviews in biotechnology, 2007, 27(1):21-28.
doi: 10.1080/07388550601168223 URL |
[22] |
HAN L B, LI Y B, WANG F X, et al. The cotton apoplastic protein CRR1 stabilizes chitinase 28 to facilitate defense against the fungal pathogen Verticillium dahlia[J]. Plant cell, 2019, 31(2):520-536.
doi: 10.1105/tpc.18.00390 URL |
[23] | NAVARRO-GONZález S S, Ramírez-Trujillo J A, Peña-Chora G, et al. Enhanced tolerance against a fungal pathogen and insect resistance in transgenic tobacco plants overexpressing an endochitinase gene from Serratia marcescens[J]. International journal of molecular sciences, 2019, 20(14):3482. |
[24] |
YANG X, YANG J, LI H, et al. Overexpression of the chitinase gene CmCH1 from Coniothyrium minitans renders enhanced resistance to Sclerotinia sclerotiorum in soybean[J]. Transgenic research, 2020, 29(2):187-198.
doi: 10.1007/s11248-020-00190-2 URL |
[25] | 王亚, 贺绥欢, 裴越琳, 等. 草莓几丁质酶基因FaChi1-FaChi4的转录特性及其对干旱胁迫、外施脱落酸及灰霉菌的响应[J]. 中国农业大学学报, 2015, 20(6):108-116. |
[26] |
KASHYAP P, DESWAL R. A novel class I Chitinase from Hippophae rhamnoides: Indications for participating in ICE-CBF cold stress signaling pathway[J]. Plant science, 2017, 259:62-70.
doi: 10.1016/j.plantsci.2017.03.004 URL |
[27] | 周洁, 黄婧. 柳树几丁质酶基因SlChi的克隆和功能验证[J]. 分子植物育种, 2018, 16(24):8013-8021. |
[1] | ZHAO Xiangjie, YUAN Binqiao, HUANG Tianxiang, GENG Shubao, ZHANG Jinyong, TU Hongtao. Optimization of Extraction Process of Garlic Straw by Response Surface Method and Determination of Acaricidal Toxicity of the Crude Extract [J]. Chinese Agricultural Science Bulletin, 2023, 39(8): 99-105. |
[2] | CHEN Yuli, YANG Ping, BI Haibin, ZHAI Huabo, WANG Dongfeng, ZHUO Ma, GAO Minghui, GONG Fajiang. Response of Main Growth Indexes of Summer Soybean Canopy to Nitrogen [J]. Chinese Agricultural Science Bulletin, 2023, 39(7): 19-23. |
[3] | XUE Rui, SHEN Shaoyun, DENG Xizhou, CHEN Cong, PENG Yuejin, DU Guangzu, CHEN Bin. Metarhizium rileyi SL Strain Liquid Fermentation Conditions: Optimization by Response Surface Methodology [J]. Chinese Agricultural Science Bulletin, 2023, 39(6): 135-143. |
[4] | LIAO Jun, FANG Hongsheng, SU Youjian, WANG Yejun, ZHANG Yongli, SUN Yulong, FANG Yage. Change Law of Water Loss in Fresh Tea Leaves Under Different Spreading Environments [J]. Chinese Agricultural Science Bulletin, 2023, 39(4): 160-164. |
[5] | HONG Senrong, ZHU Yingying, LI Ziying, HU Mingyan, OUYANG Kehui. The Plantlets of Medicago polymorpha L. and Medicago sativa L. Under Salt Stress: Transcriptome Analysis and Salt Tolerance Gene Screening [J]. Chinese Agricultural Science Bulletin, 2023, 39(3): 111-118. |
[6] | CHEN Lulu, MENG Xianghe. Study on the Best Brewing Technology of Sweet Ferment Rice [J]. Chinese Agricultural Science Bulletin, 2023, 39(3): 148-155. |
[7] | LI Yao, YANG Zhiru, CHENG Jinghao, LI Jie, WANG Tao, ZHANG Kai, ZHANG Guosong, YIN Shaowu. Effects of Hypoxic Stress and Reoxygenation on Hypoxic Response Genes and Physiological and Biochemical Indexes in the Gill Tissue of Leiocassis longirostris [J]. Chinese Agricultural Science Bulletin, 2023, 39(2): 107-116. |
[8] | ZHU Chunyue, YANG Peimin. Migration Biology and Stress Response of Coilia nasus: A Review [J]. Chinese Agricultural Science Bulletin, 2023, 39(2): 130-134. |
[9] | LU Qianqian, FENG Linjiao, WANG Shuang, GULIZHATI·Baoerhan , CHU Ren, ZHOU Long. Effects of Compound Saline-alkali Stress on Physiological and Biochemical Indexes of Table Grapes [J]. Chinese Agricultural Science Bulletin, 2023, 39(1): 62-70. |
[10] | HUANG Yu, CHEN Bin, XIAO Guanli. The Physiological Response of the Local Rice Variety of ‘Acuce’ of Hani Nationality in Yunnan Against the Feeding of Nilaparvata lugens Stål [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 123-129. |
[11] | SU Linhe, HUANG Dong, ZENG Weimin, ZHANG Yanlong. Extraction Optimization of Auricularia auricula Lectin and Study on Its Anti-tumor Activity in Vitro [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 143-150. |
[12] | LIU Qingsong, JIA Yanli, XIAO Yu, GUO Zhiding, JI Mingmei, ZHAO Zhongxiang, HUANG Sufang, YUE Mingqiang, LIU Zhen, YAN Xudong, XU Yupeng. Effects of Salt Stress on Physiological and Growth Traits of Alfalfa [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 96-101. |
[13] | LIU Peng, WU Qiaohua, SHU Huili, ZHOU Liyin, WANG Xiaodong. The Response Mechanism of Camellia oleifera to Stress Factors: Research Progress [J]. Chinese Agricultural Science Bulletin, 2022, 38(7): 24-28. |
[14] | LI Sen, FENG Di, ZHANG Jingmin, ZHU Haiyan, PENG Dianliang, WANG Zhihe, WANG Qinqin. Effects of Fulvic Acid Potassium on Germination and Seedling Growth of Cherry Radish Under NaCl Solution Hydroponics [J]. Chinese Agricultural Science Bulletin, 2022, 38(5): 48-53. |
[15] | ZHAI Caijiao, ZHANG Jiao, CUI Shiyou, CHEN Pengjun. Effects of Salt Stress on the Panicle Traits and Yield Components of Rice Cultivars [J]. Chinese Agricultural Science Bulletin, 2022, 38(4): 1-9. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||