Chinese Agricultural Science Bulletin ›› 2022, Vol. 38 ›› Issue (9): 33-40.doi: 10.11924/j.issn.1000-6850.casb2021-0483
Previous Articles Next Articles
JIA Yechun(), CHEN Runyi, HE Zelin, NI Hongtao(
)
Received:
2021-05-08
Revised:
2021-06-09
Online:
2022-03-25
Published:
2022-04-02
Contact:
NI Hongtao
E-mail:1036687489@qq.com;1303589054@qq.com
CLC Number:
JIA Yechun, CHEN Runyi, HE Zelin, NI Hongtao. Abiotic Stress on Sugar Beet: Research Progress[J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 33-40.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2021-0483
[1] | 樊福义, 苏文斌, 宫前恒, 等. 高寒干旱区膜下滴灌甜菜灌溉制度的研究[J]. 中国糖料, 2017, 39(6):37-39,42. |
[2] | 白阳阳. 甜菜幼苗耐寒性生理基础的研究[D]. 呼和浩特:内蒙古农业大学, 2017:20-30. |
[3] | HOFFMANN C M. Sucrose accumulation in sugar beet under drought stress[J]. Journal of agronomy and crop science, 2010, 196(4):243-252. |
[4] | HENRIQUE H D O G, CORRÊA P C, PAULA L R D O A, et al. Application of GAB model for water desorption isotherms and thermodynamic analysis of sugar beet seeds[J]. Journal of food process engineering, 2017, 40(1):1-8. |
[5] | 谢雯颖. 土壤水分胁迫对植物生理生态影响的研究进展[J]. 科教导刊(电子版), 2015(36):188. |
[6] | 付婷婷, 赵维维, 徐燕阁, 等. 盐涝互作对甜菜出苗率及幼苗的影响[J]. 中国糖料, 2015, 37(4):11-14,17. |
[7] | 时伟伟, 刘冉冉, 付婷婷, 等. 盐及水淹对甜菜幼苗生长和生理指标的影响[J]. 中国糖料, 2016, 38(2):8-11. |
[8] |
FELLNER H, DIRNBERGER G F, STERBA H. Specific leaf area of European larch (Larix decidua Mill.)[J]. Trees, 2016, 30:1237-1244.
doi: 10.1007/s00468-016-1361-1 URL |
[9] | 张净, 王锦霞, 郭萌萌, 等. 甜菜幼苗对干旱胁迫的适应机制[J]. 中国农学通报, 2020, 36(32):1-7. |
[10] | 韩凯虹, 张继宗, 王伟婧, 等. 水分胁迫及复水对华北寒旱区甜菜生长及品质的影响[J]. 灌溉排水学报, 2015, 34(4):61-66. |
[11] |
GHAFFARI H, TADAYON MR, BAHADOR M, et al. Investigation of the proline role in controlling traits related to sugar and root yield of sugar beet under water deficit conditions[J]. Agricultural water management, 2020, 243:106448.
doi: 10.1016/j.agwat.2020.106448 URL |
[12] | 杨虎臣. 干旱胁迫对幼苗期甜菜脯氨酸(Pro)代谢通路的影响[D]. 哈尔滨:哈尔滨工业大学, 2016. |
[13] | MAJOLA, ANELISA. Association between antioxidant activities and drought responses of two contrasting sugar beet genotypes[D]. Tygerberg: university of the western cape, 2017:10-21. |
[14] | HUSSEIN HA A, MEKKI B B, EL-SADEK M E A, et al. Effect of L-Ornithine application on improving drought tolerance in sugar beet plants[J]. Heliyon, 2019, 5(10):02631. |
[15] |
GHAFFARI H, TADAYON MR, NADEEM M, et al. Proline-mediated changes in antioxidant enzymatic activities and the physiology of sugar beet under drought stress[J]. Acta physiologiae plantarum, 2019, 41(2):23-35.
doi: 10.1007/s11738-019-2815-z URL |
[16] |
STAGNARI F, GALLENI A, SPECA S, et al. Water stress effects on growth, yield and quality traits of red beet[J]. Scientia horticulturae, 2014, 165:13-22.
doi: 10.1016/j.scienta.2013.10.026 URL |
[17] |
王克哲, 李思忠, 杜亚敏, 等. 干旱胁迫对甜菜块根膨大期光合光响应特性的影响[J]. 新疆农业科学, 2020, 57(3):434-441.
doi: 10.6048/j.issn.1001-4330.2020.03.006 |
[18] | 韩凯虹, 刘玉华, 张继宗, 等. 水分对甜菜光合及叶绿素荧光特性的影响[J]. 农业资源与环境学报, 2015, 32(5):463-470. |
[19] | 王星斗, 黄娟娟, 樊艳, 等. 杨树ERF转录因子RAP2L15基因RNAi植物表达载体的构建及遗传转化[J]. 植物生理学报, 2020, 56(12):2705-2715. |
[20] |
SZABADOS L, SAVOUREa. Proline: a multifunctional amino acid[J]. Trends in Plant Science, 2010, 15(2):89-97.
doi: 10.1016/j.tplants.2009.11.009 URL |
[21] | 孙宗艳. 盐/干旱胁迫下甜菜幼苗中miR160/164及其靶基因的表达与分析[D]. 哈尔滨:哈尔滨工业大学, 2017. |
[22] | 张皓, 崔杰, 李俊良, 等. 甜菜抗逆基因P5CS的克隆及盐胁迫下的表达分析[J]. 中国糖料, 2019, 41(3):1-6. |
[23] |
GUOLONG L, HAIXIA W, YAQING S, et al. Betaine aldehyde dehydrogenase (BADH) expression and betaine production in sugarbeet cultivars with different tolerances to drought stress[J]. Sugar tech, 2016, 18(4):420-423.
doi: 10.1007/s12355-015-0402-1 URL |
[24] | RAJABI A, RANJI Z, GRIFFITHS Z, et al. A preliminary study on genotypic differences in transcript abundance of drought-responsive genes in sugar beet[J]. Pskistan journal of biological sciences: PJBS, 2007, 10(20):3599-3605. |
[25] | 李国龙, 孙亚卿, 吴海霞, 等. 水分胁迫下甜菜幼苗过氧化物酶cprx1基因的半定量表达模式分析[J]. 作物杂志, 2012(2):47-51. |
[26] | 邹利茹, 张福顺, 刘乃新, 等. 甜菜干旱胁迫响应研究进展[J]. 中国糖料, 2021, 43(1):36-44. |
[27] | 王晓娇. 农杆菌介导AVP1基因转化甜菜的研究[D]. 呼和浩特:内蒙古农业大学, 2011. |
[28] | 刘雪. 转AVP1基因甜菜的分子检测和功能鉴定[D]. 呼和浩特:内蒙古农业大学, 2015. |
[29] | NAKASHIMA K, TAKASAKI H, MIZOI J, et al. NAC transcription factors in plant abiotic stress responses[J]. Biochim biophys acta, 2012, 1819(2):97-103. |
[30] | 徐晓阳, 李国龙, 孙亚卿, 等. 甜菜NAC转录因子鉴定及其在水分胁迫下的表达分析[J]. 植物生理学报, 2019, 55(4):444-456. |
[31] | 李国龙, 吴海霞, 孙亚卿, 等. 甜菜NAC转录因子BvNAC46基因的克隆及植物表达载体的构建[J]. 分子植物育种, 2018, 16(13):4270-4278. |
[32] | 刘蕊, 刘乃新, 吴玉梅, 等. 甜菜MYB转录因子生信分析及种子萌发期差异表达[J]. 中国农学通报, 2019, 35(25):54-65. |
[33] | 李国龙, 孙亚卿, 邵世勤, 等. 甜菜幼苗叶片抗氧化系统对干旱胁迫的响应[J]. 作物杂志, 2017(53):73-79. |
[34] | 梁文洁, 张丽, 郭新勇, 等. MLL启动子驱动SST基因转化甜菜的抗旱性分析[J]. 江苏农业科学, 2018, 46(5):43-48. |
[35] | 彭春雪. 干旱胁迫下甜菜生理及蛋白质组差异分析[D]. 哈尔滨:黑龙江大学, 2013. |
[36] | 李国龙, 吴海霞, 孙亚卿, 等. 甜菜叶片应答干旱胁迫的差异蛋白质组学分析[J]. 作物杂志, 2015(5):63-68. |
[37] |
WANG Y G, PENG C X, ZHAN Y N, et al. Comparative proteomic analysis of two sugar beet cultivars with contrasting drought tolerance[J]. Journal of plant growth regulation, 2017, 36(3):537-549.
doi: 10.1007/s00344-017-9703-9 URL |
[38] |
SCHNEIDER S, TURETSCHEK R, WEDEKING R, et al. A protein-linger strategy keeps the plant on-hold after rehydration of drought- stressed beta vulgaris[J]. Frontiers in plant science, 2019, 10:381.
doi: 10.3389/fpls.2019.00381 URL |
[39] |
ULKAR İBRAHIMOVA, PRAGATI KUMARI, SAURABH YADAV, et al. Progress in understanding salt stress response in plants using biotechnological tools[J]. Journal of biotechnology, 2021, 329:180-191.
doi: 10.1016/j.jbiotec.2021.02.007 URL |
[40] | 王东明, 贾媛, 崔继哲, 等. 盐胁迫对植物的影响及植物适应性研究进展[J]. 中国农学通报, 2009, 25(4):124-128. |
[41] | 闫洁. 盐胁迫下甜菜的热害研究[D]. 济南:山东师范大学, 2014. |
[42] |
PAGANO L, RICCARDO R, LAURA P, et al. miRNA regulation and stress adaptation in plants[J]. Environmental and experimental botany, 2021, 184(1):104369-104381.
doi: 10.1016/j.envexpbot.2020.104369 URL |
[43] | 张自强, 白晨, 张惠忠, 等. 甜菜耐盐性形态学、生理生化特性及分子水平研究进展[J]. 作物杂志, 2020(3):27-33. |
[44] | SALWA A O, MEKKI B B. Root yield and quality of sugar beet (Beta vulgarisL.) in response to ascorbic acid and saline irrigation water[J]. American-Eurasian journal of agricultural and environmental sciences, 2008, 4(4):504-513. |
[45] |
ZOU C L, WANG Y B, WANG B, et al. Effects of alkali stress on dry matter accumulation, root morphology, ion balance, free polyamines, and organic acids of sugar beet[J]. Acta physiologiae plantarum, 2021, 43:13.
doi: 10.1007/s11738-020-03194-x URL |
[46] | 刘洋. 不同甜菜品种对盐碱胁迫的生理生化响应[D]. 哈尔滨:东北农业大学, 2014. |
[47] | 於丽华, 韩晓日, 耿贵, 等. NaCl胁迫下甜菜三种内源激素含量的动态变化[J]. 东北农业大学学报, 2014, 45(12):58-64. |
[48] | RIBEIRO I C, PINHEIRO C, RIBEIRO C M, et al. Genetic diversity and physiological performance of portuguese wild beet (Beta vulgaris spp. maritima) from three contrasting habitats[J]. Frontiers in plant science, 2016, 7(87):1293-1307. |
[49] | LV X, JIN Y, WANG Y. De novo transcriptome assembly and identification of salt-responsive genes in sugar beet M14[J]. Computational biology & chemistry, 2018, 75:1-10. |
[50] | 张庭跃, 赵晨曦, 陈思学, 等. 甜菜M14品系BvM14-Tpx基因克隆及原核表达体系下应答氧化胁迫功能的初步研究[J]. 中国农学通报, 2020, 36(32):30-38. |
[51] | 吕笑言, 王宇光, 金英. 甜菜BvM14-CCoAOMT基因的克隆、表达及生物信息学分析[J]. 黑龙江大学自然科学学报, 2018, 35(3):317-323. |
[52] |
CHUAN W, CHUNQUAN M, YU P, et al. Sugar beet M14 glyoxalase I gene can enhance plant tolerance to abiotic stresses[J]. Journal of plant research, 2013, 126(3):415-425.
doi: 10.1007/s10265-012-0532-4 URL |
[53] | WANG Y, ZHAN Y, WU C, et al. Cloning of a cystatin gene from sugar beet M14 that can enhance plant salt tolerance[J]. Plant science, 2012,191- 192:93-99. |
[54] |
MA C, WANG Y, GU D, et al. Overexpression of S-Adenosyl-l-methionine synthetase 2 from sugar beet M14 increased Arabidopsis tolerance to salt and oxidative stress[J]. International journal of molecular sciences, 2017, 18(4):847-862.
doi: 10.3390/ijms18040847 URL |
[55] | 吕笑言, 王宇光, 金英. 甜菜BvM14-CMO、BvM14-BADH基因的克隆、盐胁迫表达及生物信息学分析[J]. 黑龙江大学自然科学学报, 2018, 35(1):79-84. |
[56] |
KITO K, TSUTSUMI K, RAI V, et al. Isolation and functional characterization of 3-phosphoglycerate dehydrogenase involved in salt responses in sugar beet[J]. Protoplasma, 2017, 254(6):2305-2313.
doi: 10.1007/s00709-017-1127-7 URL |
[57] |
DUNAJSKA -ORDAK K, MONIKA S K, KURNIK K, et al. Cloning and expression analysis of a gene encoding for ascorbate peroxidase and responsive to salt stress in beet (Beta vulgaris L.)[J]. Plant molecular biology reporter, 2014, 32(1):162-175.
doi: 10.1007/s11105-013-0636-6 URL |
[58] | BANERJEE A, ROYCHOUDHURY A. WRKY proteins: signaling and regulation of expression during abiotic stress responses[J]. the scientific world journal, 2015: 807560. |
[59] | 端木慧子, 陶鑫, 王建慧, 等. 甜菜M14品系盐胁迫转录组数据库的转录因子分析[J]. 黑龙江大学工程学报, 2017, 8(4):48-54. |
[60] | 孔维龙, 于坤, 但乃震, 等. 甜菜WRKY转录因子全基因组鉴定及其在非生物胁迫下的表达分析[J]. 中国农业科学, 2017, 50(17):3259-3273. |
[61] |
LI J, CUI J, CHENG D, et al. iTRAQ protein profile analysis of sugar beet under salt stress: different coping mechanisms in leaves and roots[J]. BMC plant biology, 2020, 20(1):347-354.
doi: 10.1186/s12870-020-02552-8 URL |
[62] | 康家宁. 盐胁迫下甜菜M14品系根部膜的比较蛋白质组学研究[D]. 哈尔滨:黑龙江大学, 2016. |
[63] | 李金娜. 甜菜M14品系响应盐胁迫定量磷酸化蛋白质组学研究[D]. 哈尔滨:黑龙江大学, 2015. |
[64] | 李鹤男. DDRT-PCR技术分析甜菜盐胁迫下相关基因差异表达[D]. 哈尔滨:哈尔滨工业大学, 2013. |
[65] |
MALMIR M, SOROOSHZADEH A, MOHAMMADIAN R, et al. Changes in physiological parameters of sugar beet (Beta vulgaris L.) genotypes in response to high temperature under two different climates[J]. Russian journal of plant physiology, 2021, 68:158-168.
doi: 10.1134/S102144372101012X URL |
[66] | 戴建军, 程大友, 常缨, 等. 低温诱导甜菜(Beta vulgaris L.)Ty7Br600基因的Northern blotting和Southern blotting分析[J]. 东北农业大学学报, 2012, 43(4):80-83. |
[67] | 李任任, 耿贵, 吕春华, 等. 低温对甜菜种子发芽及幼苗生长的影响[J]. 黑龙江大学自然科学学报, 2020, 37(6):718-725. |
[68] |
ZHANG H, DONG J, ZHAO X, et al. Research progress in membrane lipid metabolism and molecular mechanism in peanut cold tolerance[J]. Frontiers in plant science, 2019, 10:838-851.
doi: 10.3389/fpls.2019.00838 URL |
[69] | 吴旭红. 温度对甜菜种子萌发速率和线粒体活性的影响[J]. 中国甜菜糖业, 2005(1):21-22,49. |
[70] | VITA MARIA CRISTIANA MOLITERNI1, ROBERTA PARIS, CHIARA ONOFRI, et al. Early transcriptional changes in Beta vulgaris in response to low temperature[J]. Planta an international journal of plant biology, 2015, 242:187-201. |
[71] | 戴建军, 常缨, 李彩凤, 等. 低温诱导甜菜抽薹基因的差异表达分析[J]. 东北农业大学学报, 2009, 40(12):13-17. |
[72] | 戴建军, 常缨, 李彩凤, 等. 低温诱导甜菜(Beta vulgaris L.)抽薹相关基因的RACE分析[J]. 东北农业大学学报, 2010, 41(7):10-15. |
[73] | 戴建军, 程大友, 常缨, 等. 低温诱导甜菜(Beta vulgaris L.)Ty7Br600基因的Northern blotting和Southern blotting分析[J]. 东北农业大学学报, 2012, 43(4):80-83. |
[74] |
ARRIETA M, WILLEMS G, DEPESSEMIER J, et al. The effect of heat stress on sugar beet recombination[J]. Theoretical and applied genetics, 2021, 134:81-93.
doi: 10.1007/s00122-020-03683-0 URL |
[75] | 邹锋康, 贾海伦, 丁广洲, 等. 甜菜磷脂酰肌醇转运蛋白基因SbSEC14的克隆及低温胁迫下的表达分析[J]. 中国农学通报, 2020, 36(32):39-48. |
[76] | KITO K, YAMANE K, YAMAMORI T, et al. Isolation, functional characterization and stress responses of raffinose synthase genes in sugar beet[J]. Journal of plant biochemistry & biotechnology, 2017, 27(1):36-45. |
[77] | HASAN M K, CHENG Y KANWAR M K, et al. Responses of plant proteins to heavy metal stress-a review[J]. Frontiers in plant science, 2017, 8:492-1507. |
[78] | 张福顺, 刘威. 重金属镉对甜菜中几种微量元素吸收的影响特点[J]. 中国农学通报, 2017, 33(19):29-33. |
[79] | 张福顺, 刘乃新, 吴玉梅. 过量铜对甜菜营养吸收的影响研究[J]. 中国农学通报, 2015, 31(33):160-165. |
[80] | 王锦霞, 李硕, 代春艳, 等. 甜菜BvMTP11基因的克隆及序列分析[J]. 中国糖料, 2019, 41(3):7-11. |
[81] | 刘大丽, 马龙彪, 郭爱英, 等. 镉逆境胁迫下甜菜谷胱甘肽合成酶(BvGS)基因的克隆[J]. 中国糖料, 2017, 39(6):23-25. |
[82] | 鲁振强, 王锦霞, 董大鹏, 等. 镉逆境胁迫下甜菜BvHIPP24基因在大肠杆菌的功能分析[J]. 中国糖料, 2019, 41(4):6-10. |
[83] | 杨舒涵, 王锦霞, 郭萌萌, 等. 镉胁迫下能源甜菜BvGST基因在酵母中的功能分析[J]. 中国糖料, 2020, 42(4):17-22. |
[84] | 于新海, 李濛, 周红昕. 植物非生物胁迫的研究进展[J]. 农业与技术, 2016, 36(9):51-53. |
[85] |
İBRAHIMOVA U, KUMARI P, YADAV S, et al. Progress in understanding salt stress response in plants using biotechnological tools[J]. Journal of biotechnology, 2021, 329:180-191.
doi: 10.1016/j.jbiotec.2021.02.007 URL |
[86] | 钱禛锋, 何丽莲, 李富生. DREB转录因子研究进展及其在甘蔗抗逆育种中的应用[J]. 中国糖料, 2020, 42(3):19-24. |
[87] |
BISWAS D, SAHA S C, DEY A. CRISPR-Cas genome-editing tool in plant abiotic stress-tolerance[J]. Plant Gene, 2021, 26:100286-100292.
doi: 10.1016/j.plgene.2021.100286 URL |
[88] |
CHAN K X, WIRTZ M, PHUA S Y, et al. Balancing metabolites in drought: the sulfur assimilation conundrum[J]. Trends in plant science, 2013, 18(1):18-29.
doi: 10.1016/j.tplants.2012.07.005 URL |
[89] | 耿贵, 李任任, 吕春华, 等. 外源调节物质对盐胁迫下植物生长调控研究进展[J]. 中国农学通报, 2020, 36(24):85-90. |
[90] | LIU D, MAO Z, AN Z, et al. Enhanced heavy metal tolerance and accumulation by transgenic sugar beets expressing Streptococcus thermophilus StGCS-GS in the presence of Cd, Zn and Cu alone or in combination[J]. PLOS one, 2015, 10(6):1-6. |
[91] | 张海波, 闫洋洋, 程红艳, 等. 菌糠生物炭对土壤铅镉形态及甜菜生长的影响[J]. 山西农业大学学报:自然科学版, 2021, 41(1):103-112. |
[92] |
ALOK R, RAGINI S, MEENU B, et al. Silicon-mediated abiotic and biotic stress mitigation in plants: Underlying mechanisms and potential for stress resilient agriculture[J]. Plant physiology and biochemistry, 2021, 63:15-25.
doi: 10.1016/j.plaphy.2012.11.005 URL |
[1] | Pema Rigzin, Dhonyo Dorji, Delek Kunkyi, Dekyi Yangzom, Yeshe Dorji, Penpa Tsring. Constructing the Monitoring Model of High Temperature Damage on Rice by Combining Data from Satellites and Ground Automatic Weather Stations [J]. Chinese Agricultural Science Bulletin, 2023, 39(1): 133-141. |
[2] | CHEN Yinghua, BAI Ruxiao, WANG Juan, ZHANG Xinjiang, LIU Linghui, LIU Xiaolong, FENG Guorui, WEI Changzhou. Foliar Spraying Uniconazole and Boron: Effects on Yield and Sugar Content of Sugar Beet in Taer Basin [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 41-48. |
[3] | YE Pei, LIU Kequn, SHEN Shuanghe, LIU Kaiwen, LIU Zhixiong, DENG Yanjun. Risk Analysis and Regionalization of Heat Damage During Heading and Flowering Stage of Mid-season Rice in Hubei Province [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 110-117. |
[4] | GONG Yongyong, DUANMU Huizi. TIFY Gene Family in Sugar Beet: Whole Genome Identification and Bioinformatics Analysis [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 17-24. |
[5] | WANG Linyu, JIANG Yichen, YU Qingyang, WU Zedong, PI Zhi. Histone Deacetylases (HDACs) Gene Family in Sugar Beet: Identification and Functional Prediction [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 9-16. |
[6] | DENG Yushuai, WANG Yuguang, YU Lihua, GENG Gui. Effects of Waterlogging Stress on Growth and Photosynthetic Characteristics of Sugar Beet Seedlings Under Different Soil Salinity and Alkalinity [J]. Chinese Agricultural Science Bulletin, 2022, 38(7): 18-23. |
[7] | LIU Xiaohang, MA Shuqing, ZHAO Jing, QUAN Hujie, DENG Kuicai, CHAI Qingrong. Yield Response of Japonica Rice of Northeast China to Low Temperature in Different Time Periods of Booting Stage [J]. Chinese Agricultural Science Bulletin, 2022, 38(7): 91-98. |
[8] | ZHAO Yue, ZHANG Xiaoyan, CAO Kun, HAN Chengwei, JIANG Ying, BIAN Jing, WANG Xiaonan, SUN Yufeng. Physiology and Molecular Mechanism of Stress Resistance in Hemp: A Review [J]. Chinese Agricultural Science Bulletin, 2022, 38(6): 102-106. |
[9] | XIAO Yang, LI Qingrong, XING Dongxu, YANG Qiong. Effects of High Temperature Stress on Gene Expression of Chemosensory Protein in Midgut and Fat Body of Bombyx mori [J]. Chinese Agricultural Science Bulletin, 2022, 38(6): 107-115. |
[10] | CHEN Ruiying, ZHAO Peirong, LIU Hongjin, ZHANG Lei, GUO Xiaoyu. The Application Effect of Degradable Film in Potato Production [J]. Chinese Agricultural Science Bulletin, 2022, 38(6): 37-41. |
[11] | GU Shujie, QIAN Zhenfeng, LOU Yongming, SHEN Qingqing, PU Fengya, ZENG Dan, MA Hao, HE Lilian, LI Fusheng. Physiological Effects of Inoculated Endophytes on Sugarcane Under Drought Stress [J]. Chinese Agricultural Science Bulletin, 2022, 38(6): 42-47. |
[12] | SUN Yangcun, YIN Ziliang, GE Jingping. Accumulation of Heavy Metal Pollutants in Soil: Sources and Treatment Methods [J]. Chinese Agricultural Science Bulletin, 2022, 38(6): 75-79. |
[13] | YANG Xiujuan, SUN Jiying, GAO Julin, QIAO Shuaishuai, YU Xiaofang, WANG Zhigang, BAO Haizhu, HUANG Zhiyuan, HU Shuping. The Space-temporal Changes of Thermal Resources in Inner Mongolia from 1959 to 2018 [J]. Chinese Agricultural Science Bulletin, 2022, 38(5): 106-116. |
[14] | ZHANG Hongfen, YANG Lijie, ZHAO Yujuan, ZHANG Feng. Strong Cool Summer in East Gansu in 2020: Climate Characteristics and the Impact on Agriculture [J]. Chinese Agricultural Science Bulletin, 2022, 38(5): 117-123. |
[15] | Tsewang Thondup, DU Jun, , Phuntsok Samten. Spatial-temporal Change of Negative Accumulated Temperature in the Main Agricultural Regions of the Yarlung Zangbo River and Its Two Tributaries of Tibet During 1981-2020 [J]. Chinese Agricultural Science Bulletin, 2022, 38(5): 99-105. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||