
Chinese Agricultural Science Bulletin ›› 2022, Vol. 38 ›› Issue (6): 42-47.doi: 10.11924/j.issn.1000-6850.casb2021-0416
Special Issue: 生物技术; 植物保护; 园艺; 农业气象
Previous Articles Next Articles
					
													GU Shujie1( ), QIAN Zhenfeng1, LOU Yongming1,2, SHEN Qingqing1, PU Fengya1, ZENG Dan1, MA Hao1, HE Lilian1(
), QIAN Zhenfeng1, LOU Yongming1,2, SHEN Qingqing1, PU Fengya1, ZENG Dan1, MA Hao1, HE Lilian1( ), LI Fusheng1,3(
), LI Fusheng1,3( )
)
												  
						
						
						
					
				
Received:2021-04-19
															
							
																	Revised:2021-08-03
															
							
															
							
																	Online:2022-02-25
															
							
																	Published:2022-03-16
															
						Contact:
								HE Lilian,LI Fusheng   
																	E-mail:1316648272@qq.com;helilian905@sohu.com;Lfs810@sina.com
																					CLC Number:
GU Shujie, QIAN Zhenfeng, LOU Yongming, SHEN Qingqing, PU Fengya, ZENG Dan, MA Hao, HE Lilian, LI Fusheng. Physiological Effects of Inoculated Endophytes on Sugarcane Under Drought Stress[J]. Chinese Agricultural Science Bulletin, 2022, 38(6): 42-47.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2021-0416
| 菌株 | ACC脱氨酶活性/(U/mg) | 
|---|---|
| E3 | 0.0490±0.0044cC | 
| O9 | 0.0453±0.0025cBC | 
| C12 | 0.0037±0.0006aA | 
| C9 | 0.0017±0.0006aA | 
| C6 | 0.0010±0aA | 
| YC89 | 0.0390±0.007bB | 
| F值 | 131.674** | 
| P值 | <0.01 | 
| 菌株 | ACC脱氨酶活性/(U/mg) | 
|---|---|
| E3 | 0.0490±0.0044cC | 
| O9 | 0.0453±0.0025cBC | 
| C12 | 0.0037±0.0006aA | 
| C9 | 0.0017±0.0006aA | 
| C6 | 0.0010±0aA | 
| YC89 | 0.0390±0.007bB | 
| F值 | 131.674** | 
| P值 | <0.01 | 
| 菌株 | 叶片含水量/% | 相对电导率/% | 叶绿素含量/(mg/g) | 
|---|---|---|---|
| E3 | 70.45±0.49aA | 4.14±0.09aA | 7.05±0.01b | 
| O9 | 70.05±0.84aA | 4.26±0.03aA | 7.02±0.05ab | 
| C12 | 70.37±0.59aA | 6.31±0.12cC | 6.94±0.05a | 
| C9 | 72.88±0.2bB | 7.21±0.1dD | 6.98±0.06ab | 
| C6 | 72.28±1.02bB | 6.26±0.04cC | 6.97±0.11ab | 
| YC89 | 77.04±0.4cC | 4.69±0.07bB | 6.93±0.03a | 
| CK | 70.16±0.22aA | 7.25±0.03dD | 6.92±0.03a | 
| F值 | 51.958** | 963.319** | 2.271 | 
| P值 | <0.01 | <0.01 | >0.05 | 
| 菌株 | 叶片含水量/% | 相对电导率/% | 叶绿素含量/(mg/g) | 
|---|---|---|---|
| E3 | 70.45±0.49aA | 4.14±0.09aA | 7.05±0.01b | 
| O9 | 70.05±0.84aA | 4.26±0.03aA | 7.02±0.05ab | 
| C12 | 70.37±0.59aA | 6.31±0.12cC | 6.94±0.05a | 
| C9 | 72.88±0.2bB | 7.21±0.1dD | 6.98±0.06ab | 
| C6 | 72.28±1.02bB | 6.26±0.04cC | 6.97±0.11ab | 
| YC89 | 77.04±0.4cC | 4.69±0.07bB | 6.93±0.03a | 
| CK | 70.16±0.22aA | 7.25±0.03dD | 6.92±0.03a | 
| F值 | 51.958** | 963.319** | 2.271 | 
| P值 | <0.01 | <0.01 | >0.05 | 
| 菌株 | 可溶性糖含量/(mg/g) | 可溶性蛋白含量/(mg/g) | Pro含量/(µg/g) | 
|---|---|---|---|
| E3 | 24.27±0.04eD | 60.09±0.23dD | 100.00±0.95dD | 
| O9 | 22.26±0.08cC | 55.65±0.62bcBC | 97.64±0.72dD | 
| C12 | 22.48±0.14dC | 56.43±0.59cC | 68.09±1.79aA | 
| C9 | 21.79±0.14bB | 54.86±0.08abAB | 76.11±2.12cC | 
| C6 | 22.49±0.05dC | 55.02±0.28abAB | 69.82±1.18abAB | 
| YC89 | 27.43±0.16fE | 56.30±0.30cC | 110.21±0.72eE | 
| CK | 21.02±0.11aA | 54.36±0.72aA | 72.18±2.6bB | 
| F值 | 1059.152** | 52.029** | 350.34** | 
| P值 | <0.01 | <0.01 | <0.01 | 
| 菌株 | 可溶性糖含量/(mg/g) | 可溶性蛋白含量/(mg/g) | Pro含量/(µg/g) | 
|---|---|---|---|
| E3 | 24.27±0.04eD | 60.09±0.23dD | 100.00±0.95dD | 
| O9 | 22.26±0.08cC | 55.65±0.62bcBC | 97.64±0.72dD | 
| C12 | 22.48±0.14dC | 56.43±0.59cC | 68.09±1.79aA | 
| C9 | 21.79±0.14bB | 54.86±0.08abAB | 76.11±2.12cC | 
| C6 | 22.49±0.05dC | 55.02±0.28abAB | 69.82±1.18abAB | 
| YC89 | 27.43±0.16fE | 56.30±0.30cC | 110.21±0.72eE | 
| CK | 21.02±0.11aA | 54.36±0.72aA | 72.18±2.6bB | 
| F值 | 1059.152** | 52.029** | 350.34** | 
| P值 | <0.01 | <0.01 | <0.01 | 
| 菌株 | MDA含量/(nmol/g) | 菌株 | MDA含量/(nmol/g) | 
|---|---|---|---|
| E3 | 14.38±0.22aA | YC89 | 14.73±0.71aAB | 
| O9 | 13.57±0.27aA | CK | 19.82±0.43dD | 
| C12 | 18.00±0.4cCD | F值 | 27.852** | 
| C9 | 16.40±0.27bBC | P值 | <0.01 | 
| C6 | 18.04±1.72cCD | 
| 菌株 | MDA含量/(nmol/g) | 菌株 | MDA含量/(nmol/g) | 
|---|---|---|---|
| E3 | 14.38±0.22aA | YC89 | 14.73±0.71aAB | 
| O9 | 13.57±0.27aA | CK | 19.82±0.43dD | 
| C12 | 18.00±0.4cCD | F值 | 27.852** | 
| C9 | 16.40±0.27bBC | P值 | <0.01 | 
| C6 | 18.04±1.72cCD | 
| 菌株 | POD活性/(U/g) | SOD活性/(U/g) | 
|---|---|---|
| E3 | 3090.97±41.18cC | 365.57±2.48c | 
| O9 | 2686.76±41.18bB | 350.58±16.16bc | 
| C12 | 2758.09±41.18bB | 334.58±9.64ab | 
| C9 | 2472.77±41.18aA | 345.01±9.3abc | 
| C6 | 2710.54±71.33bB | 347.60±4.03abc | 
| YC89 | 3828.04±41.18dD | 352.22±22.53bc | 
| CK | 2781.87±71.33bB | 325.65±2.16a | 
| F值 | 224.303** | 18.667* | 
| P值 | <0.05 | <0.05 | 
| 菌株 | POD活性/(U/g) | SOD活性/(U/g) | 
|---|---|---|
| E3 | 3090.97±41.18cC | 365.57±2.48c | 
| O9 | 2686.76±41.18bB | 350.58±16.16bc | 
| C12 | 2758.09±41.18bB | 334.58±9.64ab | 
| C9 | 2472.77±41.18aA | 345.01±9.3abc | 
| C6 | 2710.54±71.33bB | 347.60±4.03abc | 
| YC89 | 3828.04±41.18dD | 352.22±22.53bc | 
| CK | 2781.87±71.33bB | 325.65±2.16a | 
| F值 | 224.303** | 18.667* | 
| P值 | <0.05 | <0.05 | 
| [1] | LÍVIA V, SANTA B, MOTA F, et al. Drought tolerance conferred to sugarcane by association with gluconacetobacter diazotrophicus: a transcriptomic view of hormone pathways[J]. PLoS one, 2014, 9(12):e114744. | 
| [2] | 徐超华, 刘新龙, 李纯佳, 等. 甘蔗非生物胁迫抗性研究进展[J]. 植物遗传资源学报, 2017, 18(3):483-493. | 
| [3] | FERREIRA T H S, TSUNADA M S, DENIS B, et al. Sugarcane water stress tolerance mechanisms and its implications on developing biotechnology solutions[J]. Frontiers in plantence, 2017, 8. | 
| [4] | KAUSHAL M. Portraying rhizobacterial mechanisms in drought tolerance[J]. PGPR amelioration in sustainable agriculture, 2019:195-216. | 
| [5] | GARCIA F H S, MENDONÇA A M C, RODRIGUES M, et al. Water deficit tolerance in sugarcane is dependent on the accumulation of sugar in the leaf[J]. Annals of applied biology, 2020, 176(1). | 
| [6] | GOSAL S S, WANI S H, KANG M S. Biotechnology and Drought Tolerance[J]. Journal of crop improvement, 2009, 23(1):19-54. doi: 10.1080/15427520802418251 URL | 
| [7] | MORISON J I L, BAKER N R, MULLINEAUX P M, et al. Improving water use in crop production[J]. Philosophical transactions of the royal society b: biological sciences, 2008, 363:639-658. doi: 10.1098/rstb.2007.2175 URL | 
| [8] | 何梦迪, 钟宣伯, 周启政, 等. 氮肥缓解苗期干旱对小麦根系形态建成及生理特性的影响[J]. 核农学报, 2019, 33(11):2246-2253. | 
| [9] | QCA C, YL A, XH A, et al. Physiological and iTRAQ based proteomics analyses reveal the mechanism of elevated CO2 concentration alleviating drought stress in cucumber (Cucumis sativus L.) seedlings[J]. Plant physiology and biochemistry, 2019, 143:142-153. doi: 10.1016/j.plaphy.2019.08.025 URL | 
| [10] | 郭良栋. 内生真菌研究进展[J]. 菌物系统, 2001, 20(1):148-152. | 
| [11] | 刘冰, 黄丽丽, 康振生, 等 小麦内生细菌对全蚀病的防治作用及其机制[J]. 植物保护学报, 2007(2). | 
| [12] | 张志东, 杨波, 章世奎, 等. 不同品种苹果树内生细菌群落多样性及功能[J]. 微生物学通报, 2020, 47(2):500-511. | 
| [13] | RUBIN R L, JONES A N, MICHAELA H, et al. Opposing effects of bacterial endophytes on biomass allocation of a wild donor and agricultural recipient[J]. FEMS microbiology ecology, 2020(3):3. | 
| [14] | VURUKONDA S S K P, VARDHARAJULA S, SHRIVASTAVA M, et al. Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria[J]. Microbiological research, 2016, 184:13-24. doi: 10.1016/j.micres.2015.12.003 URL | 
| [15] | GLICK B R, CHEN G, et al. Promotion of plant growth by ACC deaminase-producing soil bacteria[J]. Eur j plant pathology, 2007, 119(3):329-339. doi: 10.1007/s10658-007-9162-4 URL | 
| [16] | WILKINSON J F. The extracellular polysaccharides of bacteria[J]. Bacteriological reviews, 1958, 22(1):46. doi: 10.1128/br.22.1.46-73.1958 pmid: 13522509 | 
| [17] | DÍAZ HERRERA S, GROSSI C, ZAWOZNIK M, et al. Wheat seeds harbour bacterial endophytes with potential as plant growth promoters and biocontrol agents of Fusarium graminearum[J]. Microbiological research, 2016:37-43. | 
| [18] | 赵慧云, 戚名扬, 党长喜, 等. 植物根围促生菌诱导小麦幼苗耐旱性的研究[J]. 云南农业大学学报:自然科学, 2020, 35(1):8-14. | 
| [19] | SHIVSING M P, ARCHNA S. Growth stage and tissue specific colonization of endophytic bacteria having plant growth promoting traits in hybrid and composite maize (Zea mays L.)[J]. Microbiological research, 2018, 214:101-113. doi: 10.1016/j.micres.2018.05.016 URL | 
| [20] | 李龚程, 张仕颖, 肖炜, 等. 水稻中内生菌研究进展[J]. 中国农学通报, 2015, 31(12):157-162. | 
| [21] | 许明双, 生吉萍, 郭顺堂, 等. 水稻内生菌K12G2菌株的鉴定及其促生特性研究[J]. 中国农学通报, 2014, 30(9):66-70. | 
| [22] | VINOCUR B, ALTMAN A. Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations[J]. Current opinion in biotechnology, 2005, 16(2):123-132. doi: 10.1016/j.copbio.2005.02.001 URL | 
| [23] | 王雪梅. 气候变暖导致全球干旱[J]. 科学新闻, 2011(6):56-59. | 
| [24] | FLEXAS J, NIINEMETS Ü, GALLÉ A, et al. Diffusional conductances to CO2 as a target for increasing photosynjournal and photosynthetic water-use efficiency[J]. Photosynjournal research, 2013, 117(1-3). | 
| [25] | ULLAH A, NISAR M, ALI H, et al. Drought tolerance improvement in plants: an endophytic bacterial approach[J]. Applied microbiology and biotechnology, 2019, 8. | 
| [26] | 徐萌, 王金缘, 胡金丽, 等. 植物内生菌对大豆促生长和抗胁迫作用的研究进展[J]. 大豆科学, 2017, 36(6):965-969. | 
| [27] | 曹凯, 李远婷, 安登第, 等. 内生菌对植物抗干旱胁迫能力的影响研究进展[J]. 生物技术通报, 2015, 31(9):23-29. doi: 10.13560/j.cnki.biotech.bull.1985.2015.09.003 | 
| [28] | 王娜, 杨镇, 马晓颖, 等. 植物内生菌次生代谢产物对干旱胁迫下辣椒幼苗生理机制的影响[J]. 北方园艺, 2014(22):29-32. | 
| [29] | YANG J, KLOEPPER J W, RYU C M. Rhizosphere bacteria help plants tolerate abiotic stress[J]. Trends in Plant ence, 2009, 14(1):1-4. | 
| [30] | SALME T, ISLAM A A E, LUCIAN C, et al. Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles[J]. PloS one, 2014, 9(5). | 
| [31] | 易家宁, 王康才, 张琪绮, 等. 干旱胁迫对紫苏生长及品质的影响[J]. 核农学报, 2020, 34(6):1320-1326. | 
| [32] | MANCOSU N, SNYDER R, KYRIAKAKIS G, et al. Water Scarcity and Future Challenges for Food Production[J]. Water, 2015, 7(3):975-992. doi: 10.3390/w7030975 URL | 
| [33] | 刘球, 李志辉, 吴际友, 等. 外源亚精胺对不同干旱胁迫程度下红椿幼苗生理功能的修复调节[J]. 中南林业科技大学学报, 2017, 37(7):66-72. | 
| [34] | PENROSE D M, GLICK B R. Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria[J]. Physiologia plantarum, 2010, 118(1):10-15. doi: 10.1034/j.1399-3054.2003.00086.x URL | 
| [35] | SANDHYA VARDHARAJULA, SHAIK ZULFIKAR ALI, MINAKSHI GROVER, et al. Drought-tolerant plant growth promoting Bacillus spp.: effect on growth, osmolytes, and antioxidant status of maize under drought stress[J]. Journal of plant interactions, 2011, 6(1):1-14. doi: 10.1080/17429145.2010.535178 URL | 
| [36] | 闫兴富, 邓晓娟, 王静, 等. 种子大小和干旱胁迫对辽东栎幼苗生长和生理特性的影响[J]. 应用生态学报, 2020, 31(10):3331-3339. | 
| [37] | GOVINDASAMY V, GEORGE P, KUMAR M, et al. Multi-trait PGP rhizobacterial endophytes alleviate drought stress in a senescent genotype of sorghum [Sorghum bicolor (L.) Moench][J]. 3 Biotech, 2020, 10(1). | 
| [38] | OIS G F, ANNICK B, ANNIE C, et al. Alleviation of drought stress and metabolic changes in timothy (Phleum pratense L.) colonized with Bacillus subtilis B26[J]. Frontiers in plant science, 2016, 7. | 
| [39] | 严美玲, 李向东, 林英杰, 等. 苗期干旱胁迫对不同抗旱花生品种生理特性,产量和品质的影响[J]. 作物学报, 2007, 33(1):113. | 
| [40] | STRESS M I I R. Microbial inoculation in rice regulates antioxidative reactions and defense related genes to mitigate drought stress[J]. Scientific reports, 2020, 10. | 
| [41] | SHAHANAZ, PARVEEN, HARUN-UR M, et al. Molecular regulatory mechanism of isoprene emission under short-term drought stress in the tropical tree Ficus septica[J]. Tree physiology, 2018. | 
| [42] | NAMWONGSA J, JOGLOY S, VORASOOT N, et al. Endophytic bacteria improve root traits, biomass and yield of Helianthus tuberosus L. under normal and deficit water conditions[J]. Journal of microbiology and biotechnology, 2019, 29(11). | 
| [43] | MAHMOOD N S, MAQSHOOF A, AAMMAR T M, et al. Appraising the potential of EPS-producing rhizobacteria with ACC-deaminase activity to improve growth and physiology of maize under drought stress[J]. Physiologia plantarum, 2020(2). | 
| [44] | SUBHAN D, MUHAMMAD Z, FAUZIA M, et al. ACC-deaminase producing plant growth promoting rhizobacteria and biochar mitigate adverse effects of drought stress on maize growth[J]. PloS one, 2020, 15(4). | 
| [45] | SAIKIA J, SARMA R K, DHANDIA R, et al. Alleviation of drought stress in pulse crops with ACC deaminase producing rhizobacteria isolated from acidic soil of Northeast India.[J]. Scientific reports, 2018, 8(1):3560. doi: 10.1038/s41598-018-21921-w URL | 
| [46] | MAXTON ANN, SINGH POONAM, MASIH SAM A, 等. 产ACC脱氨酶细菌介导的辣椒抗旱和耐盐[J]. 辣椒杂志, 2018, 16(3):42-50. | 
| [1] | YANG Xiaoxia, YAN Jiakun. Effects of Drought Stress on Root Phenotype of Foxtail Millet Seedlings of Varieties of Different Decades [J]. Chinese Agricultural Science Bulletin, 2023, 39(7): 24-32. | 
| [2] | ZHANG Muqing, YANG Benpeng. Suggestions on Accelerating the Original Innovation of Sugarcane Industry and Ensuring the National Sugar Security [J]. Chinese Agricultural Science Bulletin, 2023, 39(5): 6-8. | 
| [3] | ZHANG Bin, LI Jinxiu, WANG Zhen, SHI Lichao, LI Jinbang. Wheat Variety ‘Wanmai632’: Tolerance Under Drought Stress [J]. Chinese Agricultural Science Bulletin, 2022, 38(36): 12-16. | 
| [4] | LUO Zhiming, QIN Wei, YIN Jiong, LI Yinhu, ZHANG Rongyue, LI Jun. Tolerance of Sugarcane Germplasm to Sugarcane Thrips [J]. Chinese Agricultural Science Bulletin, 2022, 38(34): 107-112. | 
| [5] | FAN Xian, QUAN Yiji, YANG Shaolin, LI Rudan, DENG Jun, ZHANG Yuebin. Identification and Evaluation of Drought Resistance in Sugarcane Seedling Stage [J]. Chinese Agricultural Science Bulletin, 2022, 38(3): 17-24. | 
| [6] | SHI Yang, YIN Xilong, LI Wangsheng, XING Wang. PEG Simulated Drought Stress: Effects on Morphological Indices of Drought-tolerant and Drought-sensitive Sugar Beet Germplasms [J]. Chinese Agricultural Science Bulletin, 2022, 38(29): 45-51. | 
| [7] | LI Wangsheng, WANG Xueqian, YIN Xilong, SHI Yang, XING Wang. Drought Resistance of Sugar Beet Seedling: Identification and Index Screening [J]. Chinese Agricultural Science Bulletin, 2022, 38(21): 17-23. | 
| [8] | LIAO Zhangbo, HE Yuanlan, MO Shendai. The Effect of Meteorological Factors on Sugarcane Yield and Research Progress of Environmental Interaction Genes [J]. Chinese Agricultural Science Bulletin, 2022, 38(21): 82-87. | 
| [9] | WANG Xiaochun, YANG Tianhui, WANG Chuan, YANG Weidi, GAO Ting. Effects of Mixed Saline-alkali Stress on Growth and Physiology of Alfalfa [J]. Chinese Agricultural Science Bulletin, 2022, 38(19): 139-145. | 
| [10] | YIN Shanshan, ZHOU Guoyan, GU Bowen, WU Chuncheng, YAN Liying, XIE Yang. Effects of Melatonin Priming on Physiological Characteristics of Cucumber Seedlings Under Drought Stress [J]. Chinese Agricultural Science Bulletin, 2022, 38(19): 30-36. | 
| [11] | CHEN Peihua, BAO Han, CHEN Peishou, SHEN Wankuan. Field Effect Evaluation of Healthy Seed Canes of Chewing Cane [J]. Chinese Agricultural Science Bulletin, 2022, 38(16): 1-5. | 
| [12] | ZHANG Ruijiu, MA Hui, JI Lijie, REN Dezhi, LI Shuangdong, ZHANG Yaohui, WANG Lihong. Effects of Drought Stress on Growth and Physiological and Biochemical Indexes of Potato Varieties [J]. Chinese Agricultural Science Bulletin, 2022, 38(15): 34-39. | 
| [13] | Zheng Zhiyin, Wang Fang. Effects of Drought Stress on Physiological Characteristics and Anatomical Structure of Potato [J]. Chinese Agricultural Science Bulletin, 2021, 37(8): 14-24. | 
| [14] | Wang Xiaoyan, Shan Hongli, Zhang Rongyue, Cang Xiaoyan, Wang Changmi, Li Wenfeng, Yin Jiong, Luo Zhiming, Huang Yingkun. New Brown Rust Resistance Gene of Sugarcane: Construction of Resistant and Susceptible Gene Pools and SSR Polymorphic Primers Screening [J]. Chinese Agricultural Science Bulletin, 2021, 37(6): 97-103. | 
| [15] | Zhang Hanshu, Li Wenfeng, Shan Hongli, Wang Xiaoyan, Zhang Rongyue, Fang Chao, Duan Tingying, Li Zejuan, Huang Pizhong, Huang Yingkun. High-efficiency Compound Formula Fungicide: Control Effects on Sugarcane Brown Rust [J]. Chinese Agricultural Science Bulletin, 2021, 37(6): 147-152. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||