Chinese Agricultural Science Bulletin ›› 2022, Vol. 38 ›› Issue (17): 27-34.doi: 10.11924/j.issn.1000-6850.casb2021-1021
Special Issue: 生物技术
Previous Articles Next Articles
WANG Chen1(), ZHANG Juping2, DING Han3(
)
Received:
2021-10-28
Revised:
2022-02-05
Online:
2022-06-15
Published:
2022-07-08
Contact:
DING Han
E-mail:wangchenzafu@foxmail.com;20141901@zafu.edu.cn
CLC Number:
WANG Chen, ZHANG Juping, DING Han. Plant Growth and Development and Response to Adversity Stress Regulated by miR172: A Review[J]. Chinese Agricultural Science Bulletin, 2022, 38(17): 27-34.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2021-1021
参与植物生长阶段 | 物种 | 相关基因 | 参考文献 | |||
---|---|---|---|---|---|---|
营养生长阶段转变 | 拟南芥 | miR172、GL1 | [ | |||
大豆 | miR172c | [ | ||||
玉米 | GL15、CG1 | [ | ||||
麻风树 | miR172 | [ | ||||
加杨 | miR172 | [ | ||||
桉树 | miR172 | [ | ||||
高粱 | miR172 | [ | ||||
西番莲 | miR172 | [ | ||||
开花 | 拟南芥 | miR172、AGL15、GI、SVP | [ | |||
水稻 | miR172、OsIDS1、SNB | [ | ||||
蝴蝶兰 | miR172 | [ | ||||
金缕梅 | miR172 | [ | ||||
牵牛花 | miR172 | [ | ||||
油菜 | miR172 | [ | ||||
弯曲碎米荠 | miR172 | [ | ||||
高山南芥 | miR172 | [ | ||||
花器官发育 | 番茄 | miR172 | [ | |||
拟南芥 | miR172、AP2 | [ | ||||
烟草 | miR172、AP2 | [ | ||||
兰花 | AP2-like | [ | ||||
玫瑰 | AP2-like | [ | ||||
桃树 | Prupe.6G242400 | [ | ||||
水稻 | miR172、OsMADS1 | [ | ||||
小麦 | miR172、Q(AP2L5) | [ | ||||
大麦 | miR172、CLY1 | [ | ||||
逆境胁迫 | 拟南芥 | miR172b/c、TOE1/2 | [ | |||
马铃薯 | stu-miR172c/d | [ | ||||
芥菜 | miR172 | [ | ||||
文心兰 | miR172a | [ | ||||
番茄 | miR172a/b | [ | ||||
节间长度 | 水稻 | SUI4/SNB、miR172 | [ | |||
棉花 | miR172 | [ | ||||
大麦 | miR172 | [ | ||||
作物穗型 | 小麦 | miR172/Q | [ | |||
水稻 | miR172 | [ | ||||
马铃薯块茎 | 马铃薯 | miR172 | [ | |||
根瘤 | 大豆 | miR172c、NNC1 | [ | |||
百脉根 | miR172 | [ |
参与植物生长阶段 | 物种 | 相关基因 | 参考文献 | |||
---|---|---|---|---|---|---|
营养生长阶段转变 | 拟南芥 | miR172、GL1 | [ | |||
大豆 | miR172c | [ | ||||
玉米 | GL15、CG1 | [ | ||||
麻风树 | miR172 | [ | ||||
加杨 | miR172 | [ | ||||
桉树 | miR172 | [ | ||||
高粱 | miR172 | [ | ||||
西番莲 | miR172 | [ | ||||
开花 | 拟南芥 | miR172、AGL15、GI、SVP | [ | |||
水稻 | miR172、OsIDS1、SNB | [ | ||||
蝴蝶兰 | miR172 | [ | ||||
金缕梅 | miR172 | [ | ||||
牵牛花 | miR172 | [ | ||||
油菜 | miR172 | [ | ||||
弯曲碎米荠 | miR172 | [ | ||||
高山南芥 | miR172 | [ | ||||
花器官发育 | 番茄 | miR172 | [ | |||
拟南芥 | miR172、AP2 | [ | ||||
烟草 | miR172、AP2 | [ | ||||
兰花 | AP2-like | [ | ||||
玫瑰 | AP2-like | [ | ||||
桃树 | Prupe.6G242400 | [ | ||||
水稻 | miR172、OsMADS1 | [ | ||||
小麦 | miR172、Q(AP2L5) | [ | ||||
大麦 | miR172、CLY1 | [ | ||||
逆境胁迫 | 拟南芥 | miR172b/c、TOE1/2 | [ | |||
马铃薯 | stu-miR172c/d | [ | ||||
芥菜 | miR172 | [ | ||||
文心兰 | miR172a | [ | ||||
番茄 | miR172a/b | [ | ||||
节间长度 | 水稻 | SUI4/SNB、miR172 | [ | |||
棉花 | miR172 | [ | ||||
大麦 | miR172 | [ | ||||
作物穗型 | 小麦 | miR172/Q | [ | |||
水稻 | miR172 | [ | ||||
马铃薯块茎 | 马铃薯 | miR172 | [ | |||
根瘤 | 大豆 | miR172c、NNC1 | [ | |||
百脉根 | miR172 | [ |
[1] |
WIGHTMAN B, HA L, RUVKUN G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans[J]. Cell, 1993, 75(5):855-862.
doi: 10.1016/0092-8674(93)90530-4 URL |
[2] |
ZHANG B, WANG Q, PAN X. MicroRNAs and their regulatory roles in animals and plants[J]. Journal of cellular physiology, 2007, 210(2):279-289.
doi: 10.1002/jcp.20869 URL |
[3] |
LEE R C, FEINBAUM R L, AMBROST V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell, 1993, 75(5):843-854.
doi: 10.1016/0092-8674(93)90529-Y URL |
[4] |
REINHART B J, WEINSTEIN E G, RHOADES M W, et al. MicroRNAs in plants[J]. Genes & development, 2002, 16(13):1616-1626.
doi: 10.1101/gad.1004402 URL |
[5] |
PARK W, LI J, SONG R, et al. CARPEL FACTORY, a dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana[J]. Current biology, 2002, 12(17):1484-1495.
doi: 10.1016/S0960-9822(02)01017-5 URL |
[6] | KOZOMARA A, BIRGAOANU M, GRIFFITHS J S. miRBase: from microRNA sequences to function[J]. Nucleic acids research, 2018, 47(D1):D155-D162. |
[7] | OKAMURO J K, CASTER B, VILLARROEL R, et al. The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis[J]. Proceedings of the national academy of sciences of the united states of America, 1997, 94(13):7076-7081. |
[8] | Ó'MAOILÉIDIGH D S, DRIEL A D V, SINGH A, et al. Systematic analyses of the miR172 family members of Arabidopsis define their distinct roles in regulation of APETALA2 during floral transition[J]. PLoS biology, 2021, 19(2):e3001043. |
[9] | ZHANG B, CHEN X. Secrets of the miR172 family in plant development and flowering unveiled[J]. PLoS biology, 2021, 19(2):e3001099. |
[10] |
ZHU Q, HELLIWELL C A. Regulation of flowering time and floral patterning by miR172[J]. Journal of experimental botany, 2011, 62(2):487-495.
doi: 10.1093/jxb/erq295 URL |
[11] |
KERSTETTER R A, POETHIG R S. The specification of leaf identity during shoot development[J]. Annual review of cell and developmental biology, 1998, 14(1):373-398.
doi: 10.1146/annurev.cellbio.14.1.373 URL |
[12] |
WILKIE J D, SEDGLEY M, OLESEN T. Regulation of floral initiation in horticultural trees[J]. Journal of experimental botany, 2008, 59(12):3215-3228.
doi: 10.1093/jxb/ern188 URL |
[13] |
HUIJSER P, SCHMID M. The control of developmental phase transitions in plants[J]. Development, 2011, 138(19):4117-4129.
doi: 10.1242/dev.063511 URL |
[14] |
POETHIG S S. Phase change and the regulation of shoot morphogenesis in plants.[J]. Science, 1990, 250(4983):923-930.
doi: 10.1126/science.250.4983.923 URL |
[15] | 傅钰, 王苓, 龙鸿. 拟南芥生物钟双突变体lhycca1营养生长时相转变[J]. 热带作物学报, 2019, 40(6):1089-1094. |
[16] |
WU G, PARK M Y, CONWAY S R, et al. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis[J]. Cell, 2009, 138(4):750-759.
doi: 10.1016/j.cell.2009.06.031 URL |
[17] |
WANG J, CZECH B, WEIGEL D. miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana[J]. Cell, 2009, 138(4):738-749.
doi: 10.1016/j.cell.2009.06.014 URL |
[18] |
AUKERMAN M J, SAKAI H. Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes[J]. The plant cell, 2003, 15(11):2730-2741.
doi: 10.1105/tpc.016238 URL |
[19] |
CHEN X. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development[J]. Science, 2004, 303(5666):2022-2025.
doi: 10.1126/science.1088060 URL |
[20] |
JUNG J H, SEO Y H, SEO P J, et al. The GIGANTEA-regulated microRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis[J]. The plant cell, 2007, 19(9):2736-2748.
doi: 10.1105/tpc.107.054528 URL |
[21] |
YANT L, MATHIEU J, DINH T T, et al. Orchestration of the floral transition and floral development in Arabidopsis by the bifunctional transcription factor APETALA2[J]. The plant cell, 2010, 22(7):2156-2170.
doi: 10.1105/tpc.110.075606 URL |
[22] |
JUNG J H, SEO P J, KANG S K, et al. miR172 signals are incorporated into the miR156 signaling pathway at the SPL3/4/5 genes in Arabidopsis developmental transitions[J]. Plant molecular biology, 2011, 76(1-2):35-45.
doi: 10.1007/s11103-011-9759-z URL |
[23] |
XU Y, QIAN Z, ZHOU B, et al. Age-dependent heteroblastic development of leaf hairs in Arabidopsis[J]. New phytologist, 2019, 224(2):741-748.
doi: 10.1111/nph.16054 URL |
[24] | 赵晓晖. miR172及其靶基因在大豆光周期调控开花中的功能研究[D]. 哈尔滨: 中国科学院研究生院(东北地理与农业生态研究所), 2015. |
[25] | LAUTER N, KAMPANI A, CARLSON S, et al. microRNA172 down-regulates glossy15 to promote vegetative phase change in maize[J]. Proceedings of the national academy of sciences of the United States of America, 2005, 102(26):9412-9417. |
[26] |
CHUCK G, CIGAN A M, SAETEURN K, et al. The heterochronic maize mutant Corngrass1 results from overexpression of a tandem microRNA[J]. Nature genetics, 2007, 39(4):544-549.
doi: 10.1038/ng2001 URL |
[27] | TANG M, BAI X, NIU L, et al. miR172 regulates both vegetative and reproductive development in the perennial woody plant Jatropha curcas[J]. Plant & cell physiology, 2018, 59(12):2549-2563. |
[28] | WANG J, PARK M Y, WANG L, et al. miRNA control of vegetative phase change in trees[J]. Plos genetics, 2011, 7(2):e1002012. |
[29] | LEVY A, SZWERDSZARF D, ABU-ABIED M, et al. Profiling microRNAs in Eucalyptus grandis reveals no mutual relationship between alterations in miR156 and miR172 expression and adventitious root induction during development[J]. Biomed central, 2014, 15(1):524. |
[30] |
HASHIMOTO S, TEZUKA T, YOKOI S. Morphological changes during juvenile-to-adult phase transition in sorghum.[J]. Planta, 2019, 250(5):1557-1566.
doi: 10.1007/s00425-019-03251-x URL |
[31] |
SILVA P O, BATISTA D S, CAVALCANTI J H F, et al. Leaf heteroblasty in Passiflora edulis as revealed by metabolic profiling and expression analyses of the microRNAs miR156 and miR172[J]. Annals of botany, 2019, 123(7):1191-1203.
doi: 10.1093/aob/mcz025 URL |
[32] |
LEE Y S, LEE D Y, CHO L H, et al. Rice miR172 induces flowering by suppressing OsIDS1 and SNB, two AP2 genes that negatively regulate expression of Ehd1 and florigens[J]. Rice, 2014, 7(1):1-13.
doi: 10.1186/1939-8433-7-1 URL |
[33] |
HAN Y, YAN Q, MING F. An effective homologous cloning method for isolating novel miR172s from Phalaenopsis hybrida[J]. Genetics and molecular biology, 2014, 37(2):414-422.
doi: 10.1590/S1415-47572014005000004 URL |
[34] |
LI X, GUO F, MA S, et al. Regulation of flowering time via miR172-mediated APETALA2-like expression in ornamental gloxinia (Sinningia speciosa)[J]. Journal of zhejiang university science B, 2019, 20(4):322-331.
doi: 10.1631/jzus.B1800003 URL |
[35] |
GLAZIŃSKA P, ZIENKIEWICZ A, WOJCIECHOWSKI W, et al. The putative miR172 target gene in APETALA2-like is involved in the photoperiodic flower induction of Ipomoea nil[J]. Journal of plant physiology, 2009, 166(16):1801-1813.
doi: 10.1016/j.jplph.2009.05.011 URL |
[36] |
SHIVARAJ S M, JAIN A, SINGH A. Highly preserved roles of Brassica miR172 in polyploid Brassicas: ectopic expression of variants of Brassica miR172 accelerates floral transition[J]. Molecular genetics and genomics, 2018, 293(5):1121-1138.
doi: 10.1007/s00438-018-1444-3 URL |
[37] |
LEE H, YOO S J, LEE J H, et al. Genetic framework for flowering-time regulation by ambient temperature-responsive miRNAs in Arabidopsis[J]. Nucleic acids research, 2010, 38(9):3081-3093.
doi: 10.1093/nar/gkp1240 URL |
[38] |
ZHOU C, ZHANG T, WANG X, et al. Molecular basis of age-dependent vernalization in Cardamine flexuosa[J]. Science, 2013, 340(6136):1097-1100.
doi: 10.1126/science.1234340 URL |
[39] |
BERGONZI S, ALBANI M C, THEMAAT E V L V, et al. Mechanisms of age-dependent response to winter temperature in perennial flowering of Arabisalpina[J]. Science, 2013, 340(6136):1094-1097.
doi: 10.1126/science.1234116 URL |
[40] |
YANOFSKY M F. Floral meristems to floral organs: genes controlling early events in Arabidopsis flower development[J]. Annual review of plant physiology and plant molecular biology, 1995, 46(1):167-188.
doi: 10.1146/annurev.pp.46.060195.001123 URL |
[41] | 许智宏, 刘春明. 植物发育的分子机理[M]. 北京: 植物发育的分子机理, 1998. |
[42] | CHUNG M Y, NATH U K, VREBALOV J, et al. Ectopic expression of miRNA172 in tomato (Solanum lycopersicum) reveals novel function in fruit development through regulation of an AP2 transcription factor[J]. BMC plant biology, 2020, 20(19):818-823. |
[43] |
MLOTSHWA S, YANG Z, KIM Y, et al. Floral patterning defects induced by Arabidopsis APETALA2 and microRNA172 expression in Nicotiana benthamiana[J]. Plant molecular biology, 2006, 61(4-5):781-793.
doi: 10.1007/s11103-006-0049-0 URL |
[44] |
JUNG J H, LEE S, YUN J, et al. The miR172 target TOE3 represses AGAMOUS expression during Arabidopsis floral patterning[J]. Plant science, 2014, 215-216: 29-38.
doi: 10.1016/j.plantsci.2013.10.010 URL |
[45] |
YANG F X, ZHU G F, WANG Z, et al. A putative miR172-targeted CeAPETALA2-like gene is involved in floral patterning regulation of the orchid Cymbidium ensifolium[J]. Genetics and molecular research, 2015, 14(4):12049-12061.
doi: 10.4238/2015.October.5.18 URL |
[46] |
FRANCOIS L, VERDENAUD M, FU X, et al. A miR172 target-deficient AP2-like gene correlates with the double flower phenotype in roses[J]. Scientific reports, 2018, 8(1):847-857.
doi: 10.1038/s41598-017-17386-y URL |
[47] |
GATTOLIN S, CIRILLI M, PACHECO I, et al. Deletion of the miR172 target site in a TOE-type gene is a strong candidate variant for dominant double-flower trait in Rosaceae[J]. The plant journal, 2018, 96(2):358-371.
doi: 10.1111/tpj.14036 URL |
[48] | DAI Z, WANG J, ZHU M, et al. OsMADS1 represses microRNA172 in elongation of palea/lemma development in rice[J]. Frontiers in plant science, 2016, 7:1891-1900. |
[49] |
DEBERNARDI J M, GREENWOOD J R, FINNEGAN E J, et al. APETALA 2-like genes AP2L2 and Q specify lemma identity and axillary floral meristem development in wheat[J]. The plant journal, 2020, 101(1):171-187.
doi: 10.1111/tpj.14528 URL |
[50] |
ANWAR N, OHTA M, YAZAWA T, et al. miR172 downregulates the translation of cleistogamy 1 in barley[J]. Annals of botany, 2018, 122(2):251-265.
doi: 10.1093/aob/mcy058 URL |
[51] | 张文政, 韩颖颖, 严钦骅, 等. 拟南芥miR172a-1/b-2/c对多种胁迫响应的研究[J]. 复旦学报:自然科学版, 2011, 50(3):328-333,395. |
[52] | HWANG E W, SHIN S J, PARK S C, et al. Identification of miR172 family members and their putative targets responding to drought stress in Solanum tuberosum[J]. Cell, 2011, 33(2):105-110. |
[53] |
ZOU Y, WANG S, ZHOU Y, et al. Transcriptional regulation of the immune receptor FLS2 controls the ontogeny of plant innate immunity[J]. The plant cell, 2018, 30(11):2779-2794.
doi: 10.1105/tpc.18.00297 URL |
[54] | 薛欢. 芥菜对Cd胁迫的生理响应及相关miRNA研究[D]. 长沙: 中南林业科技大学, 2020. |
[55] | 崔广荣, 刘士勋, 刘敏, 等. 文心兰茎尖组织培养的研究[J]. 种子, 2004, 23(12):16-19,23. |
[56] | 王培育. 文心兰miRNA在生长发育及抗软腐病中的应用研究[D]. 福州: 福建农林大学, 2018. |
[57] | 李杰. 番茄miR172的抗病功能研究[D]. 大连: 大连理工大学, 2015. |
[58] |
LUAN Y, CUI J, LI J, et al. Effective enhancement of resistance to Phytophthora infestans by overexpression of miR172a and b in Solanum lycopersicum[J]. Planta, 2018, 247(1):127-138.
doi: 10.1007/s00425-017-2773-x URL |
[59] | 李琳琳, 金华, 刘斯超, 等. 番茄茉莉酸缺失突变体灰霉菌侵染响应miRNA及其表达分析[J]. 园艺学报, 2020, 47(7):1323-1334. |
[60] | NAQVI A R, HAQ Q M, MUKHERJEE S K. MicroRNA profiling of tomato leaf curl new delhi virus (tolcndv) infected tomato leaves indicates that deregulation of miR159/319 and miR172 might be linked with leaf curl disease[J]. Biomed central, 2010, 7(1):281-296. |
[61] |
JI H, KIM H, YUN D W, et al. Characterization and fine mapping of a shortened uppermost internode mutant in rice[J]. Plant biotechnology reports, 2014, 8(2):125-134.
doi: 10.1007/s11816-013-0280-5 URL |
[62] |
JI H, HAN C D, LEE G S, et al. Mutations in the microRNA172 binding site of SUPERNUMERARY BRACT (SNB) suppress internode elongation in rice[J]. Rice, 2019, 12(1):62-75.
doi: 10.1186/s12284-019-0324-8 URL |
[63] |
AN W, GONG W, HE S, et al. MicroRNA and mRNA expression profiling analysis revealed the regulation of plant height in Gossypium hirsutum[J]. BMC genomics, 2015, 16(1):886-901.
doi: 10.1186/s12864-015-2071-6 URL |
[64] | PATIL V, MCDERMOTT H I, MCALLISTER T, et al. APETALA2 control of barley internode elongation[J]. Development, 2019, 146(11):dev.170373. |
[65] |
MURAMATSU M. Dosage effect of the spelta gene Q of hexaploid wheat[J]. Genetics, 1963, 48(4):469-482.
doi: 10.1093/genetics/48.4.469 URL |
[66] | HAEN K M, LU H, FRIESEN T L, et al. Genomic targeting and high-resolution mapping of the Tsn1 gene in wheat[J]. Crop Science, 2004, 44(3):951-962. |
[67] |
SIMONS K J, FELLERS J P, TRICK H N, et al. Molecular characterization of the major wheat domestication gene Q[J]. Genetics, 2006, 172(1):547-555.
doi: 10.1534/genetics.105.044727 URL |
[68] | ZHANG Z, BELCRAM H, GORNICKI P, et al. Duplication and partitioning in evolution and function of homoeologous Q loci governing domestication characters in polyploid wheat[J]. Proceedings of the national academy of sciences of the United States of America, 2011, 108(46):18737-18742. |
[69] | DEBERNARDI J M, LIN H, CHUCK G, et al. microRNA172 plays a crucial role in wheat spike morphogenesis and grain threshability[J]. Development, 2017, 144(11):1966-1975. |
[70] |
LIU P, LIU J, DONG H, et al. Functional regulation of Q by microRNA172 and transcriptional co-repressor TOPLESS in controlling bread wheat spikelet density[J]. Plant biotechnology journal, 2018, 16(2):495-506.
doi: 10.1111/pbi.12790 URL |
[71] |
WANG L, SUN X, CHANG Q, et al. Effect of di-n-butyl phthalate (DBP) on the fruit quality of cucumber and the health risk[J]. Environmental science and pollution research, 2016, 23(23):24298-24304.
doi: 10.1007/s11356-016-7658-1 URL |
[72] | LAKHOTIA N, JOSHI G, BHARDWAJ A R, et al. Identification and characterization of miRNAome in root, stem, leaf and tuber developmental stages of potato (Solanum tuberosum L.) by high-throughput sequencing[J]. Biomed central, 2014, 14(1):6-21. |
[73] |
MARTIN A, ADAM H, DÍAZ-MENDOZA M, et al. Graft-transmissible induction of potato tuberization by the microRNA miR172[J]. Development, 2009, 136(17):2873-2881.
doi: 10.1242/dev.031658 URL |
[74] |
BHOGALE S, MAHAJAN A S, NATARAJAN B, et al. MicroRNA156: a potential graft-transmissible microRNA that modulates plant architecture and tuberization in Solanum tuberosum ssp. andigena[J]. Plant physiology, 2014, 164(2):1011-1027.
doi: 10.1104/pp.113.230714 URL |
[75] |
WANG Y, WANG L, ZOU Y, et al. Soybean miR172c targets the repressive AP2 transcription factor NNC1 to activate ENOD40 expression and regulate nodule initiation[J]. The plant cell, 2014, 26(12):4782-4801.
doi: 10.1105/tpc.114.131607 URL |
[76] |
NOVA-FRANCO B, ÍÑIGUEZ L P, VALDÉS-LÓPEZ O, et al. The micro-RNA172c-APETALA2-1 node as a key regulator of the common Bean-Rhizobium etli nitrogen fixation symbiosis[J]. Plant physiology, 2015, 168(1):273-291.
doi: 10.1104/pp.114.255547 URL |
[77] |
HOLT D B, GUPTA V, MEYER D, et al. microRNA172 (miR172) signals epidermal infection and is expressed in cells primed for bacterial invasion in Lotus japonicus roots and nodules[J]. New phytologist, 2015, 208(1):241-256.
doi: 10.1111/nph.13445 URL |
[78] |
YAN Z, HOSSAIN M S, WANG J, et al. miR172 regulates soybean nodulation[J]. Molecular plant-microbe interactions, 2013, 26(12):1371-1377.
doi: 10.1094/MPMI-04-13-0111-R URL |
[1] | SUN Ge, JIE Weiguang, HU Wei, ZHANG Yingzhi, QIAO Wei, WEI Lina, JIANG Yitong, BAI Li. Effects of Mycorrhizal Fungi and Mycorrhizal Helper Bacteria on Crop Development: A Review [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 88-92. |
[2] | DENG Yushuai, WANG Yuguang, YU Lihua, GENG Gui. Effects of Waterlogging Stress on Growth and Photosynthetic Characteristics of Sugar Beet Seedlings Under Different Soil Salinity and Alkalinity [J]. Chinese Agricultural Science Bulletin, 2022, 38(7): 18-23. |
[3] | DONG Yinzhuang, WANG Gang, YU Lihua, GENG Gui. Effects of Ferrous Stress on Accumulation of Mineral Elements in Sugar Beet Seedlings [J]. Chinese Agricultural Science Bulletin, 2022, 38(3): 11-16. |
[4] | CHE Ke, ZHANG Moucao, ZHANG Junlin, ZHANG Hongni. Climatic Resource and Its Impact on Spring Maize in Qingyang City: Analysis Based on Sowing by Stages [J]. Chinese Agricultural Science Bulletin, 2022, 38(24): 80-85. |
[5] | HUANG Yali, MA Fengyun, WANG Xia, HAO Jun, DU Zhenyu, LIU Fangchun, SHI Qun, MA Bingyao. Effects of Drip Irrigation Amount on the Growth of Walnut Seedlings [J]. Chinese Agricultural Science Bulletin, 2022, 38(22): 62-68. |
[6] | GAO Zhongchao, SUN Lei, WANG Lihua, DU Chunying, ZHANG Liguo, ZHANG Jiuming, WANG Wei, GU Wei. Effects of Different Contents of Cd2+ in Soil on Growth and Development of Hemp and Soybean Seedlings [J]. Chinese Agricultural Science Bulletin, 2022, 38(22): 89-92. |
[7] | FANG Xueliang, FU Ming, CHEN Zheng, BAI Yunxiu, HE Ying, ZENG Hanlai. 5-Azacytidine Regulating Plant Gene Expression: Research Progress and Application Prospect [J]. Chinese Agricultural Science Bulletin, 2022, 38(13): 30-35. |
[8] | LI Huaide, CUI Tongxia, FAN Chongxiu, YAO Youxu, HUI Heping. Planting Density and Growth Years of Scutellaria baicalensis Georgi: Effects on Growth, Yield and Planting Benefit [J]. Chinese Agricultural Science Bulletin, 2022, 38(12): 41-46. |
[9] | Yu Hongmei, Yuan Huazhao, Guan Ling, Chen Xiaodong, Tang Shanyuan, Wang Qinglian, Zhao Mizhen. Low Temperature Storage: Effect on the Physiological and Developmental Change of Strawberry Ramets [J]. Chinese Agricultural Science Bulletin, 2021, 37(9): 35-41. |
[10] | Yin Wenlu, Liu Li, Zhao Tanjun, Han Senrong, Song Jian, Li Yingying, Chang Yaqing, Zhan Yaoyao. MicroRNAs in Sea Urchins and Sea Cucumbers: A Review [J]. Chinese Agricultural Science Bulletin, 2021, 37(7): 150-158. |
[11] | SONG Lei, TSERING Yangjin, WANG Xiaoqiang, HE Yan. Response Mechanism of Wheat to High Temperature Stress: A Review [J]. Chinese Agricultural Science Bulletin, 2021, 37(36): 6-12. |
[12] | Yan Yan, Xu Lina, Li Lijie, Zhang Zhiyong. Response of Maize Seedling Growth and Development to Potassium Concentration [J]. Chinese Agricultural Science Bulletin, 2021, 37(35): 1-6. |
[13] | Chen Lulu, Sun Zhe, Tian Changgeng, Liu Shanggang, Zheng Jianli, Zhao Fengling. The Breeding and Law of Growth and Development of a New Fresh-eating Purple Sweet Potato Variety ‘Taizishu No.1’ [J]. Chinese Agricultural Science Bulletin, 2021, 37(30): 25-31. |
[14] | Guo Zhixiang, He Chengxing, Pu Chunxiao, Chen Fushou, Shang Hui, Fan Huacai, Bai Tingting, Zeng Li. Spodoptera frugiperda: Host Selection and Effect on Its Growth and Development [J]. Chinese Agricultural Science Bulletin, 2021, 37(3): 139-144. |
[15] | Wang Yaqian, Zhang Shangkun, Li Dongbing. Effects of Wood Vinegar on the Growth and Development of Acer truncatum Seedlings [J]. Chinese Agricultural Science Bulletin, 2021, 37(25): 41-46. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||