
Chinese Agricultural Science Bulletin ›› 2021, Vol. 37 ›› Issue (7): 150-158.doi: 10.11924/j.issn.1000-6850.casb2020-0154
Previous Articles Next Articles
					
													Yin Wenlu( ), Liu Li, Zhao Tanjun, Han Senrong, Song Jian, Li Yingying, Chang Yaqing, Zhan Yaoyao(
), Liu Li, Zhao Tanjun, Han Senrong, Song Jian, Li Yingying, Chang Yaqing, Zhan Yaoyao( )
)
												  
						
						
						
					
				
Received:2020-06-05
															
							
																	Revised:2020-10-19
															
							
															
							
																	Online:2021-03-05
															
							
																	Published:2021-03-17
															
						Contact:
								Zhan Yaoyao   
																	E-mail:wenluyin@outlook.com;zhanyaoyao@dlou.edu.cn
																					CLC Number:
Yin Wenlu, Liu Li, Zhao Tanjun, Han Senrong, Song Jian, Li Yingying, Chang Yaqing, Zhan Yaoyao. MicroRNAs in Sea Urchins and Sea Cucumbers: A Review[J]. Chinese Agricultural Science Bulletin, 2021, 37(7): 150-158.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2020-0154
| [1] | Ambros V. A hierarchy of regulatory genes controls a larva-to-adult developmental switch in C. elegans[J]. Cell, 1989,57(1):49-57. | 
| [2] | 任丽媛, 赵谭军, 尹文露, 等. 水产动物“miRNA-靶基因”模体(motif)生物功能研究进展[J/OL]. http://kns.cnki.net/kcms/detail/45.1369.Q.20200325.1647.004.html.2020-03-25. | 
| [3] | 孙广杰, 戴立胜, 袁宝, 等. miR-26a和miR-30d在牛不同组织中表达的规律分析[J]. 中国农学通报, 2013,29(11):29-33. | 
| [4] | 王静毅, 刘菊华, 金志强, 等. 香蕉冷胁迫相关MicroRNA差异表达分析[J]. 中国农学通报, 2019,35(5):49-57. | 
| [5] | 汪成合. miRNA激活p21WAF1/CIP1基因表达及其对膀胱癌细胞的抑制作用 [D]. 武汉:华中科技大学, 2015. | 
| [6] | 张娇. Dnmt基因对褐飞虱翅型分化的调控及miRNA的靶向分析[D]. 南京:南京农业大学, 2016. | 
| [7] | 张连峰. miRNA-29靶基因[J]. 中国比较医学杂志, 2014(5):87. | 
| [8] | 中华人民共和国农业部. 2009中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2009. | 
| [9] | 中华人民共和国农业部. 2019中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2019. | 
| [10] | Lee Y, Kim M, Han J, et al. MicroRNA genes are transcribed by RNA polymerase II[J]. European Molecular Biology Organization Journal, 2004,23(20):4051-4060. | 
| [11] | Glen M, William L, Beverly L. RNA polymerase III transcribes human microRNAs[J]. Nature Structural & Molecular Biologyvolume, 2006,13(12):1097-1101. | 
| [12] | Han J. The Drosha-DGCR8 complex in primary microRNA processing[J]. Genes & Development, 2004,18(24):3016-3027. doi: 10.1101/gad.1262504 URL pmid: 15574589 | 
| [13] | Yi R. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs[J]. Genes & Development, 2003,17(24):3011-3016. | 
| [14] | Kim, Narry V. MicroRNA biogenesis: coordinated cropping and dicing[J]. Nature Reviews Molecular Cell Biology, 2005,6(5):376-385. | 
| [15] | 徐晶, 张桂山, 孙丽敏, 等. 辽宁绒山羊皮肤毛囊mir-1298-5p靶基因预测及表达载体构建[J]. 中国农学通报, 2018,34(5):123-128. | 
| [16] | Lee I, Ajay S, Yook J, et al. New class of microRNA targets containing simultaneous 5'-UTR and 3'-UTR interaction sites[J]. Genome Research, 2009,19(7):1175-1183. | 
| [17] | Castanotto D, Rossi J. The Promises and Pitfalls of RNA-interference-based Therapeutics[J]. Nature, 2009,457:426-433. | 
| [18] | Song J, Stoeckius M, Maaskola J, et al. Select microRNAs are essential for early development in the sea urchin[J]. Developmental Biology, 2012,362(1):104-113. URL pmid: 22155525 | 
| [19] | 韩琳, 冯新港. Wnt信号通路及其在动物生长发育过程中的作用[J]. 中国兽医寄生虫病, 2008(3):47-52. | 
| [20] | Nadezda S, Priya A, Archana D, et al. MicroRNAs regulate β-catenin of the Wnt signaling pathway in early sea urchin development[J]. Developmental Biology, 2015,402(1):127-141. URL pmid: 25614238 | 
| [21] | Anton R, Chatterjee S, Simundza J, et al. A Systematic Screen for Micro-RNAs Regulating the Canonical Wnt Pathway[J]. Plos One, 2011,6(10):e26257. URL pmid: 22043311 | 
| [22] | Nina F, Nadezda A, Syed A, et al. Inhibition of microRNA suppression of Dishevelled results in Wnt pathway associated developmental defects[J]. Development, 2018,145(23):167130. | 
| [23] | Serena R, Devescovi V, Granchi D, et al. MicroRNA expression profiling of human bone marrow mesenchymal stem cells during osteogenic differentiation reveals Osterix regulation by miR-31[J]. Gene, 2013,527(1):321-331. | 
| [24] | Stepicheva N, Song J. microRNA-31 modulates skeletal patterning in the sea urchin embryos[J]. Development, 2015,142(21):3769-3780. URL pmid: 26400092 | 
| [25] | Adomako-Ankomah A, Ettensohn C. Growth factor-mediated mesodermal cell guidance and skeletogenesis during sea urchin gastrulation[J]. Development, 2013,140(20):4214-4225. URL pmid: 24026121 | 
| [26] | Chen Yang, Li Yingying, Zhan Yaoyao, et al. Identification of molecular markers for superior quantitative traits in a novel sea cucumber strain by comparative microRNA-mRNA expression profiling[J]. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2020,35:100686. | 
| [27] | Chen Muyan, Wang Shanshan, Li Xingke, et al. The potential contribution of miRNA-200-3p to the fatty acid metabolism by regulating AjEHHADH during aestivation in sea cucumber[J]. Peer J, 2018,6:e5703. | 
| [28] | Zhou Zunchun, Sun Dapeng, Yang Aifu, et al. Molecular characterization and expression analysis of a complement component 3 in the sea cucumber (Apostichopus japonicus)[J]. Fish & Shellfish Immunology, 2011,31(4):547. | 
| [29] | He Xiaobin, Jing Zhizhong, Cheng Guofeng. MicroRNAs: New regulators of Toll-Like receptor signalling pathways[J]. Biomed Research International, 2014,2014:945169. | 
| [30] | 翟钰, 曹雁惠, 张峰, 等. 刺参补体AjC3活性相关miRNA的筛选与初步研究[J]. 大连海洋大学学报, 2015,30(6):585-591. | 
| [31] | Liu Ming, Lang Nan, Qiu Meng, et al. miR-137 targets Cdc42 expression, induces cell cycle G1 arrest and inhibits invasion in colorectal cancer cells[J]. International Journal of Cancer, 2011,128(6):1269-1279. doi: 10.1002/ijc.25452 URL pmid: 20473940 | 
| [32] | Zhong Lei, Zhang Feng, Zhai Yu, et al. Identification and comparative analysis of complement C3-associated microRNAs in immune response of Apostichopus japonicus by high-throughput sequencing[J]. Scientific Reports, 2015,5(1):17763. | 
| [33] | Lv Zhimeng, Li Chenghua, Zhang Pengjun, et al. miR-200 modulates coelomocytes antibacterial activities and LPS priming via targeting Tollip in Apostichopus japonicus[J]. Fish & Shellfish Immunology, 2015,45(2):431-436. URL pmid: 25910848 | 
| [34] | Zhou Xiaoxu, Chang Yaqing, Zhan Yaoyao, et al. Integrative mRNA-miRNA interaction analysis associate with immune response of sea cucumber, Apostichopus japonicus, based on transcriptome database[J]. Fish & Shellfish Immunology, 2018,72:69-76. doi: 10.1016/j.fsi.2017.10.031 URL pmid: 29054825 | 
| [35] | Wendlandt E, Graff J, Gioannini T, et al. The role of microRNAs miR-200b and miR-200c in TLR4 signaling and NF-κB activation[J]. Innate Immunity, 2012,18(6):846-855. | 
| [36] | Lu Meng, Zhang Pengjuan, Li Chenghua, et al. miRNA-133 augments coelomocyte phagocytosis in bacteria-challenged Apostichopus japonicus via targeting the TLR component of IRAK-1 in vitro and in vivo[J]. Scientific Reports, 2015,5(1):12608. | 
| [37] | Lv Miao, Chen Huahui, Shao Yina, et al. miR-92a regulates coelomocytes apoptosis in sea cucumber, Apostichopus japonicus, via targeting, Aj14-3-3 ζ, in vivo[J]. Fish & Shellfish Immunology, 2017,69:211-217. URL pmid: 28860073 | 
| [38] | Sun Hongjuan, Zhou Zunchun, Ying Dong, et al. In-depth profiling of miRNA regulation in the body wall of sea cucumber, Apostichopus japonicus, during skin ulceration syndrome progression[J]. Fish & Shellfish Immunology, 2018,79:202-208. doi: 10.1016/j.fsi.2018.05.020 URL pmid: 29763733 | 
| [39] | Tian Yi, Shang Yanpeng, Guo R, et al. miR-10 involved in salinity-induced stress responses and targets TBC1D5 in the sea cucumber, Apostichopus japonicas[J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2020,242. | 
| [40] | Roy S, Leidal A, Ye J, et al. Autophagy-Dependent Shuttling of TBC1D5 Controls Plasma Membrane Translocation of GLUT1 and Glucose Uptake[J]. Molecular Cell, 2017,67(1):84-95. URL pmid: 28602638 | 
| [41] | Meng Xianliang, Dong Yunwei, Dong Shuanglin, et al. Large-scale mortality and limited expression of heat shock proteins of aestivating sea cucumbers Apostichopus japonicus after acute salinity decrease[J]. Aquaculture Research, 2015,46(7):1573-1581. | 
| [42] | Tian Yi, Shang Yanpeng, Guo R, et al. Salinity stress-induced differentially expressed miRNAs and target genes in sea cucumbers Apostichopus japonicus[J]. Cell Stress & Chaperones, 2019,24(4):719-733. | 
| [43] | Huo Da, Sun Lina, Li Xiaoni, et al. Differential Expression of miRNAs in the Respiratory Tree of the Sea Cucumber Apostichopus japonicus under Hypoxia Stress[J]. G3 & 58 Genesgenetics, 2017,7(11):1129. | 
| [44] | Igarashi H, Kurihara H, Mitsuhashi K, et al. Association of MicroRNA-31-5p with Clinical Efficacy of Anti-EGFR Therapy in Patients with Metastatic Colorectal Cancer[J]. Annals of Surgical Oncology, 2015,22(8):2640-2648. doi: 10.1245/s10434-014-4264-7 URL pmid: 25472647 | 
| [45] | Foley N H, Bray I S, Tivnan A, et al. MicroRNA-184 inhibits neuroblastoma cell survival through targeting the serine/threonine kinase AKT2[J]. Molecular Cancer, 2010,9(1):83. | 
| [46] | Liu Xiujuan, Fu Bo, Chen Ddapeng, et al. miR-184 and miR-150 promote renal glomerular mesangial cell aging by targeting Rab1a and Rab31[J]. Experimental Cell Research, 2015,336(2):192-203. URL pmid: 26165933 | 
| [47] | 孙湘平. 关注海洋: 中国近海及毗领海域海洋知识[M] 北京: 中国国际广播出版社, 2012. | 
| [48] | 赵冲. 温度对中间球海胆存活、行为和生长的影响:对底播增殖的启示[A]. 中国水产学会.第三届现代海洋(淡水)牧场学术研讨会摘要集[C]. 2019:28-29. | 
| [49] | Li Chao, Xu Dongxue. Understanding microRNAs regulation in heat shock response in the sea cucumber Apostichopus japonicus[J]. Fish & Shellfish Immunology, 2018,81:214-220. | 
| [50] | Li Jiangfeng, Meng Shuai, Xu Mingjie, et al. Downregulation of N6-methyladenosine binding YTHDF2 protein mediated by miR-493-3p suppresses prostate cancer by elevating N6-methyladenosine levels[J]. Oncotarget, 2017,9(3):3752-3764. URL pmid: 29423080 | 
| [51] | Huard K, Gosset J, Montgomery J, et al. Optimization of a Dicarboxylic Series for in vivo Inhibition of Citrate Transport by the Solute Carrier 13 (SLC13) Family[J]. Journal of Medicinal Chemistry, 2016,59(3):1165-1175. | 
| [1] | SUN Ge, JIE Weiguang, HU Wei, ZHANG Yingzhi, QIAO Wei, WEI Lina, JIANG Yitong, BAI Li. Effects of Mycorrhizal Fungi and Mycorrhizal Helper Bacteria on Crop Development: A Review [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 88-92. | 
| [2] | DENG Yushuai, WANG Yuguang, YU Lihua, GENG Gui. Effects of Waterlogging Stress on Growth and Photosynthetic Characteristics of Sugar Beet Seedlings Under Different Soil Salinity and Alkalinity [J]. Chinese Agricultural Science Bulletin, 2022, 38(7): 18-23. | 
| [3] | QIAN Zhenjia, XU Jincheng, YU Youbin, ZHANG Chenglin, LIU Huang. Effects of Water Flow on Fish Swimming Behavior and Physiological Metabolism: Research Progress [J]. Chinese Agricultural Science Bulletin, 2022, 38(32): 133-138. | 
| [4] | WANG Yuemin, KE Yuqin, XIE Rongrong, LI Chunying, LI Wenqing. Effects of Spraying Microelement-fertilizer on Physiological Metabolism of Tobacco Plant at Mature Stage Under Localized Fertilization [J]. Chinese Agricultural Science Bulletin, 2022, 38(31): 24-30. | 
| [5] | DONG Yinzhuang, WANG Gang, YU Lihua, GENG Gui. Effects of Ferrous Stress on Accumulation of Mineral Elements in Sugar Beet Seedlings [J]. Chinese Agricultural Science Bulletin, 2022, 38(3): 11-16. | 
| [6] | CHE Ke, ZHANG Moucao, ZHANG Junlin, ZHANG Hongni. Climatic Resource and Its Impact on Spring Maize in Qingyang City: Analysis Based on Sowing by Stages [J]. Chinese Agricultural Science Bulletin, 2022, 38(24): 80-85. | 
| [7] | HUANG Yali, MA Fengyun, WANG Xia, HAO Jun, DU Zhenyu, LIU Fangchun, SHI Qun, MA Bingyao. Effects of Drip Irrigation Amount on the Growth of Walnut Seedlings [J]. Chinese Agricultural Science Bulletin, 2022, 38(22): 62-68. | 
| [8] | GAO Zhongchao, SUN Lei, WANG Lihua, DU Chunying, ZHANG Liguo, ZHANG Jiuming, WANG Wei, GU Wei. Effects of Different Contents of Cd2+ in Soil on Growth and Development of Hemp and Soybean Seedlings [J]. Chinese Agricultural Science Bulletin, 2022, 38(22): 89-92. | 
| [9] | WANG Chen, ZHANG Juping, DING Han. Plant Growth and Development and Response to Adversity Stress Regulated by miR172: A Review [J]. Chinese Agricultural Science Bulletin, 2022, 38(17): 27-34. | 
| [10] | FANG Xueliang, FU Ming, CHEN Zheng, BAI Yunxiu, HE Ying, ZENG Hanlai. 5-Azacytidine Regulating Plant Gene Expression: Research Progress and Application Prospect [J]. Chinese Agricultural Science Bulletin, 2022, 38(13): 30-35. | 
| [11] | LI Huaide, CUI Tongxia, FAN Chongxiu, YAO Youxu, HUI Heping. Planting Density and Growth Years of Scutellaria baicalensis Georgi: Effects on Growth, Yield and Planting Benefit [J]. Chinese Agricultural Science Bulletin, 2022, 38(12): 41-46. | 
| [12] | Yu Hongmei, Yuan Huazhao, Guan Ling, Chen Xiaodong, Tang Shanyuan, Wang Qinglian, Zhao Mizhen. Low Temperature Storage: Effect on the Physiological and Developmental Change of Strawberry Ramets [J]. Chinese Agricultural Science Bulletin, 2021, 37(9): 35-41. | 
| [13] | SONG Lei, TSERING Yangjin, WANG Xiaoqiang, HE Yan. Response Mechanism of Wheat to High Temperature Stress: A Review [J]. Chinese Agricultural Science Bulletin, 2021, 37(36): 6-12. | 
| [14] | Yan Yan, Xu Lina, Li Lijie, Zhang Zhiyong. Response of Maize Seedling Growth and Development to Potassium Concentration [J]. Chinese Agricultural Science Bulletin, 2021, 37(35): 1-6. | 
| [15] | Chen Lulu, Sun Zhe, Tian Changgeng, Liu Shanggang, Zheng Jianli, Zhao Fengling. The Breeding and Law of Growth and Development of a New Fresh-eating Purple Sweet Potato Variety ‘Taizishu No.1’ [J]. Chinese Agricultural Science Bulletin, 2021, 37(30): 25-31. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||