Chinese Agricultural Science Bulletin ›› 2021, Vol. 37 ›› Issue (7): 150-158.doi: 10.11924/j.issn.1000-6850.casb2020-0154
Previous Articles Next Articles
Yin Wenlu(), Liu Li, Zhao Tanjun, Han Senrong, Song Jian, Li Yingying, Chang Yaqing, Zhan Yaoyao(
)
Received:
2020-06-05
Revised:
2020-10-19
Online:
2021-03-05
Published:
2021-03-17
Contact:
Zhan Yaoyao
E-mail:wenluyin@outlook.com;zhanyaoyao@dlou.edu.cn
CLC Number:
Yin Wenlu, Liu Li, Zhao Tanjun, Han Senrong, Song Jian, Li Yingying, Chang Yaqing, Zhan Yaoyao. MicroRNAs in Sea Urchins and Sea Cucumbers: A Review[J]. Chinese Agricultural Science Bulletin, 2021, 37(7): 150-158.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2020-0154
[1] | Ambros V. A hierarchy of regulatory genes controls a larva-to-adult developmental switch in C. elegans[J]. Cell, 1989,57(1):49-57. |
[2] | 任丽媛, 赵谭军, 尹文露, 等. 水产动物“miRNA-靶基因”模体(motif)生物功能研究进展[J/OL]. http://kns.cnki.net/kcms/detail/45.1369.Q.20200325.1647.004.html.2020-03-25. |
[3] | 孙广杰, 戴立胜, 袁宝, 等. miR-26a和miR-30d在牛不同组织中表达的规律分析[J]. 中国农学通报, 2013,29(11):29-33. |
[4] | 王静毅, 刘菊华, 金志强, 等. 香蕉冷胁迫相关MicroRNA差异表达分析[J]. 中国农学通报, 2019,35(5):49-57. |
[5] | 汪成合. miRNA激活p21WAF1/CIP1基因表达及其对膀胱癌细胞的抑制作用 [D]. 武汉:华中科技大学, 2015. |
[6] | 张娇. Dnmt基因对褐飞虱翅型分化的调控及miRNA的靶向分析[D]. 南京:南京农业大学, 2016. |
[7] | 张连峰. miRNA-29靶基因[J]. 中国比较医学杂志, 2014(5):87. |
[8] | 中华人民共和国农业部. 2009中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2009. |
[9] | 中华人民共和国农业部. 2019中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2019. |
[10] | Lee Y, Kim M, Han J, et al. MicroRNA genes are transcribed by RNA polymerase II[J]. European Molecular Biology Organization Journal, 2004,23(20):4051-4060. |
[11] | Glen M, William L, Beverly L. RNA polymerase III transcribes human microRNAs[J]. Nature Structural & Molecular Biologyvolume, 2006,13(12):1097-1101. |
[12] |
Han J. The Drosha-DGCR8 complex in primary microRNA processing[J]. Genes & Development, 2004,18(24):3016-3027.
doi: 10.1101/gad.1262504 URL pmid: 15574589 |
[13] | Yi R. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs[J]. Genes & Development, 2003,17(24):3011-3016. |
[14] | Kim, Narry V. MicroRNA biogenesis: coordinated cropping and dicing[J]. Nature Reviews Molecular Cell Biology, 2005,6(5):376-385. |
[15] | 徐晶, 张桂山, 孙丽敏, 等. 辽宁绒山羊皮肤毛囊mir-1298-5p靶基因预测及表达载体构建[J]. 中国农学通报, 2018,34(5):123-128. |
[16] | Lee I, Ajay S, Yook J, et al. New class of microRNA targets containing simultaneous 5'-UTR and 3'-UTR interaction sites[J]. Genome Research, 2009,19(7):1175-1183. |
[17] | Castanotto D, Rossi J. The Promises and Pitfalls of RNA-interference-based Therapeutics[J]. Nature, 2009,457:426-433. |
[18] |
Song J, Stoeckius M, Maaskola J, et al. Select microRNAs are essential for early development in the sea urchin[J]. Developmental Biology, 2012,362(1):104-113.
URL pmid: 22155525 |
[19] | 韩琳, 冯新港. Wnt信号通路及其在动物生长发育过程中的作用[J]. 中国兽医寄生虫病, 2008(3):47-52. |
[20] |
Nadezda S, Priya A, Archana D, et al. MicroRNAs regulate β-catenin of the Wnt signaling pathway in early sea urchin development[J]. Developmental Biology, 2015,402(1):127-141.
URL pmid: 25614238 |
[21] |
Anton R, Chatterjee S, Simundza J, et al. A Systematic Screen for Micro-RNAs Regulating the Canonical Wnt Pathway[J]. Plos One, 2011,6(10):e26257.
URL pmid: 22043311 |
[22] | Nina F, Nadezda A, Syed A, et al. Inhibition of microRNA suppression of Dishevelled results in Wnt pathway associated developmental defects[J]. Development, 2018,145(23):167130. |
[23] | Serena R, Devescovi V, Granchi D, et al. MicroRNA expression profiling of human bone marrow mesenchymal stem cells during osteogenic differentiation reveals Osterix regulation by miR-31[J]. Gene, 2013,527(1):321-331. |
[24] |
Stepicheva N, Song J. microRNA-31 modulates skeletal patterning in the sea urchin embryos[J]. Development, 2015,142(21):3769-3780.
URL pmid: 26400092 |
[25] |
Adomako-Ankomah A, Ettensohn C. Growth factor-mediated mesodermal cell guidance and skeletogenesis during sea urchin gastrulation[J]. Development, 2013,140(20):4214-4225.
URL pmid: 24026121 |
[26] | Chen Yang, Li Yingying, Zhan Yaoyao, et al. Identification of molecular markers for superior quantitative traits in a novel sea cucumber strain by comparative microRNA-mRNA expression profiling[J]. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2020,35:100686. |
[27] | Chen Muyan, Wang Shanshan, Li Xingke, et al. The potential contribution of miRNA-200-3p to the fatty acid metabolism by regulating AjEHHADH during aestivation in sea cucumber[J]. Peer J, 2018,6:e5703. |
[28] | Zhou Zunchun, Sun Dapeng, Yang Aifu, et al. Molecular characterization and expression analysis of a complement component 3 in the sea cucumber (Apostichopus japonicus)[J]. Fish & Shellfish Immunology, 2011,31(4):547. |
[29] | He Xiaobin, Jing Zhizhong, Cheng Guofeng. MicroRNAs: New regulators of Toll-Like receptor signalling pathways[J]. Biomed Research International, 2014,2014:945169. |
[30] | 翟钰, 曹雁惠, 张峰, 等. 刺参补体AjC3活性相关miRNA的筛选与初步研究[J]. 大连海洋大学学报, 2015,30(6):585-591. |
[31] |
Liu Ming, Lang Nan, Qiu Meng, et al. miR-137 targets Cdc42 expression, induces cell cycle G1 arrest and inhibits invasion in colorectal cancer cells[J]. International Journal of Cancer, 2011,128(6):1269-1279.
doi: 10.1002/ijc.25452 URL pmid: 20473940 |
[32] | Zhong Lei, Zhang Feng, Zhai Yu, et al. Identification and comparative analysis of complement C3-associated microRNAs in immune response of Apostichopus japonicus by high-throughput sequencing[J]. Scientific Reports, 2015,5(1):17763. |
[33] |
Lv Zhimeng, Li Chenghua, Zhang Pengjun, et al. miR-200 modulates coelomocytes antibacterial activities and LPS priming via targeting Tollip in Apostichopus japonicus[J]. Fish & Shellfish Immunology, 2015,45(2):431-436.
URL pmid: 25910848 |
[34] |
Zhou Xiaoxu, Chang Yaqing, Zhan Yaoyao, et al. Integrative mRNA-miRNA interaction analysis associate with immune response of sea cucumber, Apostichopus japonicus, based on transcriptome database[J]. Fish & Shellfish Immunology, 2018,72:69-76.
doi: 10.1016/j.fsi.2017.10.031 URL pmid: 29054825 |
[35] | Wendlandt E, Graff J, Gioannini T, et al. The role of microRNAs miR-200b and miR-200c in TLR4 signaling and NF-κB activation[J]. Innate Immunity, 2012,18(6):846-855. |
[36] | Lu Meng, Zhang Pengjuan, Li Chenghua, et al. miRNA-133 augments coelomocyte phagocytosis in bacteria-challenged Apostichopus japonicus via targeting the TLR component of IRAK-1 in vitro and in vivo[J]. Scientific Reports, 2015,5(1):12608. |
[37] |
Lv Miao, Chen Huahui, Shao Yina, et al. miR-92a regulates coelomocytes apoptosis in sea cucumber, Apostichopus japonicus, via targeting, Aj14-3-3 ζ, in vivo[J]. Fish & Shellfish Immunology, 2017,69:211-217.
URL pmid: 28860073 |
[38] |
Sun Hongjuan, Zhou Zunchun, Ying Dong, et al. In-depth profiling of miRNA regulation in the body wall of sea cucumber, Apostichopus japonicus, during skin ulceration syndrome progression[J]. Fish & Shellfish Immunology, 2018,79:202-208.
doi: 10.1016/j.fsi.2018.05.020 URL pmid: 29763733 |
[39] | Tian Yi, Shang Yanpeng, Guo R, et al. miR-10 involved in salinity-induced stress responses and targets TBC1D5 in the sea cucumber, Apostichopus japonicas[J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2020,242. |
[40] |
Roy S, Leidal A, Ye J, et al. Autophagy-Dependent Shuttling of TBC1D5 Controls Plasma Membrane Translocation of GLUT1 and Glucose Uptake[J]. Molecular Cell, 2017,67(1):84-95.
URL pmid: 28602638 |
[41] | Meng Xianliang, Dong Yunwei, Dong Shuanglin, et al. Large-scale mortality and limited expression of heat shock proteins of aestivating sea cucumbers Apostichopus japonicus after acute salinity decrease[J]. Aquaculture Research, 2015,46(7):1573-1581. |
[42] | Tian Yi, Shang Yanpeng, Guo R, et al. Salinity stress-induced differentially expressed miRNAs and target genes in sea cucumbers Apostichopus japonicus[J]. Cell Stress & Chaperones, 2019,24(4):719-733. |
[43] | Huo Da, Sun Lina, Li Xiaoni, et al. Differential Expression of miRNAs in the Respiratory Tree of the Sea Cucumber Apostichopus japonicus under Hypoxia Stress[J]. G3 & 58 Genesgenetics, 2017,7(11):1129. |
[44] |
Igarashi H, Kurihara H, Mitsuhashi K, et al. Association of MicroRNA-31-5p with Clinical Efficacy of Anti-EGFR Therapy in Patients with Metastatic Colorectal Cancer[J]. Annals of Surgical Oncology, 2015,22(8):2640-2648.
doi: 10.1245/s10434-014-4264-7 URL pmid: 25472647 |
[45] | Foley N H, Bray I S, Tivnan A, et al. MicroRNA-184 inhibits neuroblastoma cell survival through targeting the serine/threonine kinase AKT2[J]. Molecular Cancer, 2010,9(1):83. |
[46] |
Liu Xiujuan, Fu Bo, Chen Ddapeng, et al. miR-184 and miR-150 promote renal glomerular mesangial cell aging by targeting Rab1a and Rab31[J]. Experimental Cell Research, 2015,336(2):192-203.
URL pmid: 26165933 |
[47] | 孙湘平. 关注海洋: 中国近海及毗领海域海洋知识[M] 北京: 中国国际广播出版社, 2012. |
[48] | 赵冲. 温度对中间球海胆存活、行为和生长的影响:对底播增殖的启示[A]. 中国水产学会.第三届现代海洋(淡水)牧场学术研讨会摘要集[C]. 2019:28-29. |
[49] | Li Chao, Xu Dongxue. Understanding microRNAs regulation in heat shock response in the sea cucumber Apostichopus japonicus[J]. Fish & Shellfish Immunology, 2018,81:214-220. |
[50] |
Li Jiangfeng, Meng Shuai, Xu Mingjie, et al. Downregulation of N6-methyladenosine binding YTHDF2 protein mediated by miR-493-3p suppresses prostate cancer by elevating N6-methyladenosine levels[J]. Oncotarget, 2017,9(3):3752-3764.
URL pmid: 29423080 |
[51] | Huard K, Gosset J, Montgomery J, et al. Optimization of a Dicarboxylic Series for in vivo Inhibition of Citrate Transport by the Solute Carrier 13 (SLC13) Family[J]. Journal of Medicinal Chemistry, 2016,59(3):1165-1175. |
[1] | SUN Ge, JIE Weiguang, HU Wei, ZHANG Yingzhi, QIAO Wei, WEI Lina, JIANG Yitong, BAI Li. Effects of Mycorrhizal Fungi and Mycorrhizal Helper Bacteria on Crop Development: A Review [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 88-92. |
[2] | DENG Yushuai, WANG Yuguang, YU Lihua, GENG Gui. Effects of Waterlogging Stress on Growth and Photosynthetic Characteristics of Sugar Beet Seedlings Under Different Soil Salinity and Alkalinity [J]. Chinese Agricultural Science Bulletin, 2022, 38(7): 18-23. |
[3] | QIAN Zhenjia, XU Jincheng, YU Youbin, ZHANG Chenglin, LIU Huang. Effects of Water Flow on Fish Swimming Behavior and Physiological Metabolism: Research Progress [J]. Chinese Agricultural Science Bulletin, 2022, 38(32): 133-138. |
[4] | WANG Yuemin, KE Yuqin, XIE Rongrong, LI Chunying, LI Wenqing. Effects of Spraying Microelement-fertilizer on Physiological Metabolism of Tobacco Plant at Mature Stage Under Localized Fertilization [J]. Chinese Agricultural Science Bulletin, 2022, 38(31): 24-30. |
[5] | DONG Yinzhuang, WANG Gang, YU Lihua, GENG Gui. Effects of Ferrous Stress on Accumulation of Mineral Elements in Sugar Beet Seedlings [J]. Chinese Agricultural Science Bulletin, 2022, 38(3): 11-16. |
[6] | CHE Ke, ZHANG Moucao, ZHANG Junlin, ZHANG Hongni. Climatic Resource and Its Impact on Spring Maize in Qingyang City: Analysis Based on Sowing by Stages [J]. Chinese Agricultural Science Bulletin, 2022, 38(24): 80-85. |
[7] | HUANG Yali, MA Fengyun, WANG Xia, HAO Jun, DU Zhenyu, LIU Fangchun, SHI Qun, MA Bingyao. Effects of Drip Irrigation Amount on the Growth of Walnut Seedlings [J]. Chinese Agricultural Science Bulletin, 2022, 38(22): 62-68. |
[8] | GAO Zhongchao, SUN Lei, WANG Lihua, DU Chunying, ZHANG Liguo, ZHANG Jiuming, WANG Wei, GU Wei. Effects of Different Contents of Cd2+ in Soil on Growth and Development of Hemp and Soybean Seedlings [J]. Chinese Agricultural Science Bulletin, 2022, 38(22): 89-92. |
[9] | WANG Chen, ZHANG Juping, DING Han. Plant Growth and Development and Response to Adversity Stress Regulated by miR172: A Review [J]. Chinese Agricultural Science Bulletin, 2022, 38(17): 27-34. |
[10] | FANG Xueliang, FU Ming, CHEN Zheng, BAI Yunxiu, HE Ying, ZENG Hanlai. 5-Azacytidine Regulating Plant Gene Expression: Research Progress and Application Prospect [J]. Chinese Agricultural Science Bulletin, 2022, 38(13): 30-35. |
[11] | LI Huaide, CUI Tongxia, FAN Chongxiu, YAO Youxu, HUI Heping. Planting Density and Growth Years of Scutellaria baicalensis Georgi: Effects on Growth, Yield and Planting Benefit [J]. Chinese Agricultural Science Bulletin, 2022, 38(12): 41-46. |
[12] | Yu Hongmei, Yuan Huazhao, Guan Ling, Chen Xiaodong, Tang Shanyuan, Wang Qinglian, Zhao Mizhen. Low Temperature Storage: Effect on the Physiological and Developmental Change of Strawberry Ramets [J]. Chinese Agricultural Science Bulletin, 2021, 37(9): 35-41. |
[13] | SONG Lei, TSERING Yangjin, WANG Xiaoqiang, HE Yan. Response Mechanism of Wheat to High Temperature Stress: A Review [J]. Chinese Agricultural Science Bulletin, 2021, 37(36): 6-12. |
[14] | Yan Yan, Xu Lina, Li Lijie, Zhang Zhiyong. Response of Maize Seedling Growth and Development to Potassium Concentration [J]. Chinese Agricultural Science Bulletin, 2021, 37(35): 1-6. |
[15] | Chen Lulu, Sun Zhe, Tian Changgeng, Liu Shanggang, Zheng Jianli, Zhao Fengling. The Breeding and Law of Growth and Development of a New Fresh-eating Purple Sweet Potato Variety ‘Taizishu No.1’ [J]. Chinese Agricultural Science Bulletin, 2021, 37(30): 25-31. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||