Chinese Agricultural Science Bulletin ›› 2023, Vol. 39 ›› Issue (1): 45-50.doi: 10.11924/j.issn.1000-6850.casb2022-0061
Previous Articles Next Articles
GOU Jiquan(), SU Liwen, CHENG Zhikui, HUANG Xiaochun, WU Wenting, LV Haixuan, LIU Zhengguo(
)
Received:
2022-02-10
Revised:
2022-06-03
Online:
2023-01-05
Published:
2022-12-27
Contact:
LIU Zhengguo
E-mail:313100857@qq.com;liu-zhengguo@126.com
CLC Number:
GOU Jiquan, SU Liwen, CHENG Zhikui, HUANG Xiaochun, WU Wenting, LV Haixuan, LIU Zhengguo. Genetic Analysis of Chlorophyll Content in the Flesh of Wax Gourd[J]. Chinese Agricultural Science Bulletin, 2023, 39(1): 45-50.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2022-0061
群体 | 株数 | 平均值/(μg/g) | 最低值/(μg/g) | 最高值/(μg/g) | 差值/(μg/g) | 峰度 | 偏度 |
---|---|---|---|---|---|---|---|
P1 | 8 | 1.09±0.15 | 0.60 | 1.69 | 1.09 | -0.67 | 0.48 |
P2 | 7 | 6.78±0.32 | 5.77 | 7.65 | 1.88 | -2.08 | -0.06 |
F1 | 12 | 2.13±0.35 | 1.06 | 3.30 | 2.24 | -1.55 | 0.18 |
F2 | 194 | 2.41±0.11 | 0.55 | 7.45 | 6.90 | 0.65 | 1.04 |
群体 | 株数 | 平均值/(μg/g) | 最低值/(μg/g) | 最高值/(μg/g) | 差值/(μg/g) | 峰度 | 偏度 |
---|---|---|---|---|---|---|---|
P1 | 8 | 1.09±0.15 | 0.60 | 1.69 | 1.09 | -0.67 | 0.48 |
P2 | 7 | 6.78±0.32 | 5.77 | 7.65 | 1.88 | -2.08 | -0.06 |
F1 | 12 | 2.13±0.35 | 1.06 | 3.30 | 2.24 | -1.55 | 0.18 |
F2 | 194 | 2.41±0.11 | 0.55 | 7.45 | 6.90 | 0.65 | 1.04 |
模型 | MLV值 | AIC | 模型 | MLV值 | AIC |
---|---|---|---|---|---|
1MG-A | -388 | 785.7558 | MX1-AD-ADI | -348 | 712.5784 |
1MG-AD | -361 | 733.4982 | MX1-EAD-AD | -371 | 753.0085 |
1MG-EAD | -362 | 734.4564 | MX1-NCD-AD | -351 | 713.2881 |
1MG-NCD | -399 | 807.5360 | MX2-A-AD | -370 | 746.8378 |
2MG-A | -380 | 769.3349 | MX2-AD-AD | -341 | 691.6910 |
2MG-AD | -341 | 696.0086 | MX2-ADI-AD | -335 | 688.0900 |
2MG-ADI | -337 | 696.6345 | MX2-ADI-ADI | -335 | 694.4754 |
2MG-CD | -344 | 697.5490 | MX2-CD-AD | -366 | 738.7573 |
2MG-EA | -380 | 767.3349 | MX2-EA-AD | -370 | 744.8320 |
2MG-EAD | -350 | 707.0548 | MX2-EAD-AD | -344 | 692.5660 |
MX1-A-AD | -370 | 752.8922 | PG-AD | -382 | 773.9715 |
MX1-AD-AD | -351 | 715.2881 | PG-ADI | -366 | 743.4832 |
模型 | MLV值 | AIC | 模型 | MLV值 | AIC |
---|---|---|---|---|---|
1MG-A | -388 | 785.7558 | MX1-AD-ADI | -348 | 712.5784 |
1MG-AD | -361 | 733.4982 | MX1-EAD-AD | -371 | 753.0085 |
1MG-EAD | -362 | 734.4564 | MX1-NCD-AD | -351 | 713.2881 |
1MG-NCD | -399 | 807.5360 | MX2-A-AD | -370 | 746.8378 |
2MG-A | -380 | 769.3349 | MX2-AD-AD | -341 | 691.6910 |
2MG-AD | -341 | 696.0086 | MX2-ADI-AD | -335 | 688.0900 |
2MG-ADI | -337 | 696.6345 | MX2-ADI-ADI | -335 | 694.4754 |
2MG-CD | -344 | 697.5490 | MX2-CD-AD | -366 | 738.7573 |
2MG-EA | -380 | 767.3349 | MX2-EA-AD | -370 | 744.8320 |
2MG-EAD | -350 | 707.0548 | MX2-EAD-AD | -344 | 692.5660 |
MX1-A-AD | -370 | 752.8922 | PG-AD | -382 | 773.9715 |
MX1-AD-AD | -351 | 715.2881 | PG-ADI | -366 | 743.4832 |
候选模型 | 世代 | U12 | P(U12) | U22 | P(U22) | U32 | P(U32) | nW2 | P(nW2) | Dn | P(Dn) |
---|---|---|---|---|---|---|---|---|---|---|---|
MX2-AD-AD | P1 | 1.3099 | 0.2524 | 0.6837 | 0.4083 | 1.2662 | 0.2605 | 0.2027 | 0.2644 | 0.3392 | 0.3206 |
F1 | 2.4466 | 0.1178 | 3.4344 | 0.0639 | 1.8358 | 0.1754 | 0.2539 | 0.1893 | 0.4047 | 0.2129 | |
P2 | 0.7294 | 0.3931 | 1.3239 | 0.2499 | 1.6762 | 0.1954 | 0.1240 | 0.4848 | 0.3260 | 0.4502 | |
F2 | 0.3514 | 0.5533 | 0.2044 | 0.6512 | 0.2379 | 0.6257 | 0.1308 | 0.4575 | 0.0609 | 0.4536 | |
MX2-ADI-AD | P1 | 0.0182 | 0.8927 | 0.0034 | 0.9532 | 0.5737 | 0.4488 | 0.0512 | 0.8691 | 0.2084 | 0.8660 |
F1 | 0.0184 | 0.8920 | 0.5661 | 0.4518 | 6.1699 | 0.0130* | 0.1375 | 0.4327 | 0.2811 | 0.6370 | |
P2 | 0.0153 | 0.9017 | 0.5328 | 0.4654 | 5.9593 | 0.0146* | 0.1436 | 0.4117 | 0.2981 | 0.5632 | |
F2 | 0.0460 | 0.8301 | 0.0311 | 0.8599 | 0.0156 | 0.9005 | 0.0479 | 0.8893 | 0.0396 | 0.9115 | |
MX2-EAD-AD | P1 | 1.3561 | 0.2442 | 0.6374 | 0.4247 | 1.7339 | 0.1879 | 0.2292 | 0.2214 | 0.3679 | 0.2343 |
F1 | 2.8491 | 0.0914 | 3.6451 | 0.0562 | 1.2090 | 0.2715 | 0.2799 | 0.1609 | 0.3942 | 0.2384 | |
P2 | 0.8507 | 0.3563 | 1.2362 | 0.2662 | 0.7657 | 0.3815 | 0.1185 | 0.5080 | 0.3102 | 0.5124 | |
F2 | 0.5132 | 0.4738 | 0.4926 | 0.4828 | 0.0011 | 0.9737 | 0.1540 | 0.3789 | 0.0550 | 0.5850 |
候选模型 | 世代 | U12 | P(U12) | U22 | P(U22) | U32 | P(U32) | nW2 | P(nW2) | Dn | P(Dn) |
---|---|---|---|---|---|---|---|---|---|---|---|
MX2-AD-AD | P1 | 1.3099 | 0.2524 | 0.6837 | 0.4083 | 1.2662 | 0.2605 | 0.2027 | 0.2644 | 0.3392 | 0.3206 |
F1 | 2.4466 | 0.1178 | 3.4344 | 0.0639 | 1.8358 | 0.1754 | 0.2539 | 0.1893 | 0.4047 | 0.2129 | |
P2 | 0.7294 | 0.3931 | 1.3239 | 0.2499 | 1.6762 | 0.1954 | 0.1240 | 0.4848 | 0.3260 | 0.4502 | |
F2 | 0.3514 | 0.5533 | 0.2044 | 0.6512 | 0.2379 | 0.6257 | 0.1308 | 0.4575 | 0.0609 | 0.4536 | |
MX2-ADI-AD | P1 | 0.0182 | 0.8927 | 0.0034 | 0.9532 | 0.5737 | 0.4488 | 0.0512 | 0.8691 | 0.2084 | 0.8660 |
F1 | 0.0184 | 0.8920 | 0.5661 | 0.4518 | 6.1699 | 0.0130* | 0.1375 | 0.4327 | 0.2811 | 0.6370 | |
P2 | 0.0153 | 0.9017 | 0.5328 | 0.4654 | 5.9593 | 0.0146* | 0.1436 | 0.4117 | 0.2981 | 0.5632 | |
F2 | 0.0460 | 0.8301 | 0.0311 | 0.8599 | 0.0156 | 0.9005 | 0.0479 | 0.8893 | 0.0396 | 0.9115 | |
MX2-EAD-AD | P1 | 1.3561 | 0.2442 | 0.6374 | 0.4247 | 1.7339 | 0.1879 | 0.2292 | 0.2214 | 0.3679 | 0.2343 |
F1 | 2.8491 | 0.0914 | 3.6451 | 0.0562 | 1.2090 | 0.2715 | 0.2799 | 0.1609 | 0.3942 | 0.2384 | |
P2 | 0.8507 | 0.3563 | 1.2362 | 0.2662 | 0.7657 | 0.3815 | 0.1185 | 0.5080 | 0.3102 | 0.5124 | |
F2 | 0.5132 | 0.4738 | 0.4926 | 0.4828 | 0.0011 | 0.9737 | 0.1540 | 0.3789 | 0.0550 | 0.5850 |
项目 | 参数 | 估计值 |
---|---|---|
一阶遗传参数 | m | 3.6818 |
da | -1.477 | |
db | -0.835 | |
ha | -1.465 | |
hb | -0.715 | |
i | — | |
jab | — | |
jba | — | |
l | — | |
[d] | -0.514 | |
[h] | 0.0722 | |
二阶遗传参数 | σ2mg | 1.7675 |
h2mg/% | 82.0696 | |
σ2Pg | 0 | |
h2Pg/% | 0 |
项目 | 参数 | 估计值 |
---|---|---|
一阶遗传参数 | m | 3.6818 |
da | -1.477 | |
db | -0.835 | |
ha | -1.465 | |
hb | -0.715 | |
i | — | |
jab | — | |
jba | — | |
l | — | |
[d] | -0.514 | |
[h] | 0.0722 | |
二阶遗传参数 | σ2mg | 1.7675 |
h2mg/% | 82.0696 | |
σ2Pg | 0 | |
h2Pg/% | 0 |
[1] | MORTON J F. The wax gourd, a year-round Florida vegetable with unusual keeping quality[J]. Florida state horticultural society, 1971:104-109. |
[2] |
ADAMI M, FRANCESCHI P D, BRANDI F. Identifying a carotenoid cleavage dioxygenase (CCD4) gene controlling yellow/white fruit flesh color of “Piqiutao” (white fruit flesh) and its mutant (yellow fruit flesh)[J]. Plant molecular biology reporter, 2013, 31(5):1166-1175.
doi: 10.1007/s11105-013-0628-6 URL |
[3] | 黄持都, 胡小松, 廖小军, 等. 叶绿素研究进展[J]. 中国食品添加剂, 2007(3):114-118. |
[4] |
BO K, WEI S, WANG W, et al. QTL mapping and genome-wide association study reveal two novel loci associated with green flesh color in cucumber[J]. BMC plant biology, 2019, 19(1):243.
doi: 10.1186/s12870-019-1835-6 pmid: 31174472 |
[5] | BURGER Y, PARIS H S, COHEN R, et al. Genetic diversity of cucumis melo[J]. John Wiley & Sons, Ltd, 2010. |
[6] |
GALPAZ N, GONDA I, SHEMTOV D, et al. Deciphering genetic factors that determine melon fruit-quality traits using RNA-Seq-based high-resolution QTL and eQTL mapping[J]. Plant journal, 2018, 94(1):169-191.
doi: 10.1111/tpj.13838 URL |
[7] |
BLANKE M M, LENZ F. Fruit photosynthesis[J]. Plant, cell and environment, 1989, 12:31-46.
doi: 10.1111/j.1365-3040.1989.tb01914.x URL |
[8] |
HETHERINGTON S E, SMILLIE R M, DAVIES W J. Photosynthetic activities of vegetative and fruiting tissues of tomato[J]. Journal of experimental botany, 1998, 49:1173-1181.
doi: 10.1093/jxb/49.324.1173 URL |
[9] | DINAR M, STEVENS M A. The relationship between starch accumulation and soluble solids content of tomato fruits[J]. Journal American society for horticultural science,1981. |
[10] |
POWELL A L T, NGUYEN C V, HILL T, et al. Uniform ripening encodes a Golden 2-like transcription factor regulating tomato fruit chloroplast development[J]. Science, 2012, 336:1711-1715.
doi: 10.1126/science.1222218 pmid: 22745430 |
[11] |
SAGAR M, CHERVIN C, MILA I, et al. SlARF4, an auxin response factor involved in the control of sugar metabolism during tomato fruit development[J]. Plant physiology, 2013, 161(3):1362-1374.
doi: 10.1104/pp.113.213843 pmid: 23341361 |
[12] | DAVIES J N, HOBSON G E, MCGLASSON W B. The constituents of tomato fruit- the influence of environment, nutrition, and genotype[J]. CRC critical reviews in food technology, 1981, 15(3):205-280. |
[13] |
KEPHART J C. Chlorophyll derivatives- Their chemistry? commercial preparation and uses[J]. Economic botany, 1955, 9(1):38.
doi: 10.1007/BF02984957 URL |
[14] |
EDWARDS B J. Treatment of chronic leg ulcers with ointment containing soluble chlorophyll[J]. Physiotherapy, 1954, 40(6):177.
pmid: 13177174 |
[15] |
BOWERS W F. Chlorophyll in wound healing and suppurative disease[J]. American journal of surgery, 1947, 73(1):37-50.
pmid: 20279378 |
[16] | LARATO D C, PFAU F R. Effects of a water-soluble chlorophyllin ointment on gingival inflammation[J]. The New York state dental journal, 1970, 36(5):291-293. |
[17] | BALDER H F. Heme and chlorophyll intake and risk of colorectal cancer in the Netherlands cohort study[J]. Cancer epidemiology, biomarkers and prevention: A publication of the American Association for Cancer Research, 2006, 15(4):717-725. |
[18] | 孙小镭, 王永强, 王冰, 等. 黄瓜嫩果果皮叶绿素含量的遗传[J]. 园艺学报, 2004, 31(3):327-331. |
[19] | 张兴伟, 王志德, 牟建民, 等. 烤烟叶绿素含量遗传分析[J]. 中国烟草学报, 2011, 17(3):48-52. |
[20] | 陈虹容, 商桑, 田丽波, 等. 苦瓜叶片叶绿素含量的遗传分析[J]. 热带作物学报, 2021, 42(6):1572-1578. |
[21] | 林婷婷, 王立, 张琳, 等. 不结球白菜叶绿素含量的主基因+多基因混合遗传分析[J]. 南京农业大学学报, 2014, 37(5):34-40. |
[22] | 吴浪, 赵菁菁, 罗佳伟, 等. 番茄绿果与橙果间果实颜色及主要色素含量的遗传研究[J]. 中国蔬菜, 2017(3):29-37. |
[23] | 李洪涛, 许瀚元, 李景芳, 等. 玉米叶绿素含量基因效应分析[J]. 作物杂志, 2019(5):46-51. |
[24] | 唐亮, 徐正进. 水稻苗期干物重和叶绿素含量的遗传分析[J]. 安徽农业科学, 2007, 35(6):1633-1635. |
[25] | 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000:130-137. |
[26] | 章元明, 盖钧镒, 张孟臣. 利用P1 F1 P2和F2或F2:3世代联合的数量性状分离分析[J]. 西南农业大学学报, 2000, 22(1):6-9. |
[27] | 曹锡文, 刘兵, 章元明. 植物数量性状分离分析Windows软件包SEA的研制[J]. 南京农业大学学报, 2013, 36(6):1-6. |
[28] | 刘文睿, 江彪, 彭庆务, 等. 冬瓜种子千粒重主基因+多基因混合遗传分析[J]. 热带作物学报, 2012, 33(6):993-996. |
[29] | 谢大森, 何晓明, 彭庆务, 等. 冬瓜枯萎病的抗性遗传规律[J]. 热带作物学报, 2009, 30(7):1005-1008. |
[30] | 程志魁, 刘政国, 陈婕英, 等. 冬瓜果实形状的主基因+多基因遗传分析[J]. 分子植物育种, 2021, 20(17). |
[31] | 吴兴富, 焦芳婵, 陈学军, 等. 烟草主要农艺性状的主基因+多基因遗传分析[J]. 分子植物育种, 2021, 19(19):6438-6447. |
[32] | 方敦煌, 焦芳婵, 卢灿华, 等. 烟草青枯病抗性的主基因+多基因混合遗传分析[J]. 分子植物育种, 2023. |
[33] | 解松峰, 吉万全, 王长有, 等. 小麦穗部性状的主基因+多基因混合遗传模型分析[J]. 中国农业科学, 2019, 52(24):4437-4452. |
[34] | 丁盼盼. 辣椒果皮颜色的遗传分析及QTL定位[D]. 合肥: 安徽农业大学, 2017. |
[35] | 李洪涛, 许瀚元, 李景芳, 等. 玉米叶绿素含量基因效应分析[J]. 作物杂志, 2019(5):46-51. |
[36] | 孙小镭, 王永强, 王冰, 等. 黄瓜嫩果果皮叶绿素含量的遗传[J]. 园艺学报, 2004(3):327-331. |
[37] | 唐亮, 徐正进. 水稻苗期干物重和叶绿素含量的遗传分析[J]. 安徽农业科学, 2007(6):1633-1635. |
[38] | 翟英. 番茄果实色泽和色素含量的遗传特征[J]. 分子植物育种, 2019, 17(1):264-269. |
[39] |
李丹丹, 司龙亭, 李季, 等. 弱光下黄瓜幼苗叶片叶绿素含量的遗传分析[J]. 华北农学报, 2009, 24(1):133-137.
doi: 10.7668/hbnxb.2009.01.030 |
[1] | SUN Bo, LIU Run, WANG Zhanbin, CHEN Huangxin, YAN Su. The Powdery Mildew on Polygonum persicaria L.: Microscopic Observation and Phylogenetic Relationship Analysis [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 130-136. |
[2] | Nuerxiati·Nuermaimaiti , LI Huanyu, YANG Chengde. Antagonistic Streptomyces Against Pepper Root Rot Pathogen (Fusarium oxysporum): Screening and Phylogenetic Analysis of 16S rRNA Gene Sequence [J]. Chinese Agricultural Science Bulletin, 2022, 38(33): 116-123. |
[3] | JIANG Feng, YAN Yan, MAI Jiaqi, LIANG Rilang, ZHOU Jiecheng, LI Pingyao, LIU Pengfei. Quality Traits of Sweet Corn: Major Gene +Polygene Genetic Analysis [J]. Chinese Agricultural Science Bulletin, 2022, 38(30): 14-20. |
[4] | JIAO Jiabin, CHEN Xiaodong, ZHENG Chaoyuan, CHEN Xiao, CHANG Jingjing, SONG Zhao, XIE Dasen, HE Yuzhi, ZHANG Baige. Dynamics of Dry Matter and Nutrient Absorption and Distribution of Black Wax Gourd [J]. Chinese Agricultural Science Bulletin, 2022, 38(18): 62-69. |
[5] | Li Can, Chen Xiaodong, Zheng Zhuoyue, Jiao Jiabin, Li Qiang, Zhang Fusuo, Xie Dasen, He Yuzhi, Zhang Baige. Effects of Magnesium and Microelement Elements on Appearance and Nutritional Quality of Black Wax Gourd [J]. Chinese Agricultural Science Bulletin, 2021, 37(4): 49-55. |
[6] | Huang Shuping, Tan Jie, Chen Xia, Zhang Hongyuan, Zhang Min. Genetic Research of Pericarp Color Traits of Luffa cylindrica [J]. Chinese Agricultural Science Bulletin, 2021, 37(25): 58-63. |
[7] | . Major Gene + Polygene Genetic Analysis of Boll Weight in RIL Population of‘CCRI70’ Under Various Environments [J]. Chinese Agricultural Science Bulletin, 2019, 35(15): 128-137. |
[8] | . Genetic Analysis and Gene Mapping for Melon Rind Color [J]. Chinese Agricultural Science Bulletin, 2019, 35(13): 64-69. |
[9] | 陈优优,李容丹,路晶晶,吴寒,龚玉杰 and 田宝玉. Diversity and Phylogenetic Analysis of Root Endophytic Bacillus in Tomato [J]. Chinese Agricultural Science Bulletin, 2018, 34(8): 37-45. |
[10] | . EMS Mutagenesis Optimization and Mutants Screening of Wax Gourd [J]. Chinese Agricultural Science Bulletin, 2018, 34(21): 35-41. |
[11] | . Genetic Model Analysis of Major Gene + Polygene of Flesh Browning in Luffa cylindrica [J]. Chinese Agricultural Science Bulletin, 2018, 34(19): 50-56. |
[12] | . Genetic AnalysGenetic Analysis of Major Gene Plus Polygene of Spike Traits of Spring Wheat [J]. Chinese Agricultural Science Bulletin, 2017, 33(6): 20-26. |
[13] | . Genetic analysis of agronomic traits of Wheat Seedling Stage under drought conditions #$NL Yan Yan,Wang Chunhua,Mu Ping [J]. Chinese Agricultural Science Bulletin, 2017, 33(3): 8-14. |
[14] | . Genome-wide Identification and Phylogenetic Analysis of SWEET Gene Family in Gossypium raimondii [J]. Chinese Agricultural Science Bulletin, 2017, 33(25): 13-21. |
[15] | Wang Xue,Chen Lixin,Hu Shaoxin,Fu Lixin,Xie Libo and Quan Hong. Genetic Analysis of Vitamin C in Pepper Fruit [J]. Chinese Agricultural Science Bulletin, 2017, 33(13): 49-53. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||