欢迎访问《中国农学通报》,

中国农学通报 ›› 2015, Vol. 31 ›› Issue (15): 240-246.doi: 10.11924/j.issn.1000-6850.casb14120160

所属专题: 农业气象

• 资源 环境 生态 土壤 气象 • 上一篇    下一篇

山西日光温室逐日极端气温预测模型研究

高丽娜,孙擎,郭翠荣   

  1. 南京信息工程大学应用气象学院,南京信息工程大学应用气象学院,山西省忻州市忻府区气象局
  • 收稿日期:2014-12-23 修回日期:2015-05-11 接受日期:2015-03-25 出版日期:2015-06-02 发布日期:2015-06-02
  • 通讯作者: 孙擎
  • 基金资助:
    山西省气象局科学技术研究一般课题 “忻府区日光温室甜瓜种植气象服务技术研究” (SXKYBNY201510062); 山西省气象局科学技术研究一般课题 “五台山中台自动气象站资料质量分析研究” (SXKYBTC201510060); 山西省气象局科学技术研究一般课题 “临汾市气候环境对冬小麦病虫害影响的分析与研究” (SXKYBNY201510075)。

Forecast Model of Daily Extreme Temperature in Solar Greenhouse in Shanxi Province

  • Received:2014-12-23 Revised:2015-05-11 Accepted:2015-03-25 Online:2015-06-02 Published:2015-06-02

摘要: 利用山西省忻州市日光温室的室内小气候观测数据及气象站资料,用BP神经网络及逐步回归法建立以多种输入变量的不同天气条件下的日光温室内最高温度、最低温度的模型。结果表明,利用BP神经网络及逐步回归法建立的模型R2均在0.96以上,RMSE与AE大部分在2℃之下。利用逐步回归方法在模拟日光温室内晴天最高、最低温度和寡照的最高温度精度较高,利用BP神经网络模型在多云的最高、最低温度与寡照的最低温度模拟的精度较高。选择精度更好的模型对日光温室的极端气温做准确的预测,可为山西省设施农业的管理和调控及小气候预报提供支持。

关键词: 柑橘皮渣, 柑橘皮渣, 资源化利用, 有机肥

Abstract: Based on the meteorological data both inside and outside the solar greenhouse in Xinzhou, Shanxi province. The minimum and maximum temperature forecast model was established based on BP neural network and stepwise regression model. The result showed that R2 was higher than 0.96 and most of the root mean square error (RMSE) and absolute error (AE) was lower than 2℃ on BP neural network model. The precision of stepwise regression model was higher than BP neural network model in minimum and maximum temperature of clear day and maximum temperature of overcast. The precision of BP neural network model was higher than stepwise regression model in minimum and maximum temperature of cloudy and minimum temperature of overcast. The model was chosen by more precision could predicate extreme temperature in solar greenhouse. The model could provide scientific basis for facility agriculture management and environment regulation and microclimate prediction in Shanxi province.