中国农学通报 ›› 2020, Vol. 36 ›› Issue (35): 78-87.doi: 10.11924/j.issn.1000-6850.casb2020-0012
杨阳1(), 马绎皓2(
), 赵鸿1, 齐月1, 王润元1, 张凯1, 王鹤龄1
收稿日期:
2020-04-17
修回日期:
2020-08-22
出版日期:
2020-12-15
发布日期:
2020-12-18
通讯作者:
马绎皓
作者简介:
杨阳,女,1992年出生,内蒙古锡林郭勒人,研究实习员,硕士,研究方向为农业气象。通信地址:730020 甘肃省兰州市城关区东岗东路2070号 中国气象局兰州干旱气象研究所,E-mail: 基金资助:
Yang Yang1(), Ma Yihao2(
), Zhao Hong1, Qi Yue1, Wang Runyuan1, Zhang Kai1, Wang Heling1
Received:
2020-04-17
Revised:
2020-08-22
Online:
2020-12-15
Published:
2020-12-18
Contact:
Ma Yihao
摘要:
以直接研究观测到气候变化对作物发育和产量的影响,可以为评估气候变化对作物生产影响提供更准确的信息。利用西北地区特干旱(敦煌)、干旱(武威)、半干旱(定西)、半湿润(临夏)、湿润(岷县)5个案例区1981(1986)—2017年地面观测数据,分析气象变化趋势,确定春小麦生长、产量与气候因子的关系。结果表明,1981—2017年间,5个案例区的气候变化模式及其对春小麦物候和产量的影响在空间和时间上是不同的。除极端干旱地区出现较暖和较潮湿的趋势,其他地区观测到较暖和较干燥的趋势。相关分析表明,1981(1986)—2017年武威、定西、临夏站春小麦产量呈增加趋势,但变化趋势除武威站外均不显著,其中武威站生育期内≥30℃天数的减少致使武威站近37年来产量增加,而定西站生育期内降水增多、每穗粒数显著增多及不孕小穗数的显著减少致使定西站近32年产量呈增加趋势。预计随着全球气温的持续升高和未来降水格局的变化,将进一步影响中国西北地区春小麦生产。
中图分类号:
杨阳, 马绎皓, 赵鸿, 齐月, 王润元, 张凯, 王鹤龄. 气候变化对西北地区不同气候类型区春小麦生长的影响[J]. 中国农学通报, 2020, 36(35): 78-87.
Yang Yang, Ma Yihao, Zhao Hong, Qi Yue, Wang Runyuan, Zhang Kai, Wang Heling. Impact of Climate Change on Spring Wheat Growth in Different Climate Types in Northwest China[J]. Chinese Agricultural Science Bulletin, 2020, 36(35): 78-87.
气候类型 | 典型测站 | 海拔高度/m | 经度/E | 纬度/N | 年降水量/mm | 年平均气温/℃ | 灌溉模式 | 数据时间 |
---|---|---|---|---|---|---|---|---|
超干旱 | 敦煌 | 1139 | 94°41′ | 40°09′ | 40.2 | 9.5 | 灌溉 | 1981–2008 |
干旱 | 武威 | 1531 | 102°40′ | 37°55′ | 175.6 | 8.9 | 灌溉 | 1981–2017 |
半干旱 | 定西 | 1897 | 104°37′ | 35°35′ | 365.7 | 6.5 | 雨养 | 1986–2017 |
半湿润 | 临夏 | 1917 | 103°11′ | 35°35′ | 501.4 | 7.2 | 灌溉 | 1981–2017 |
湿润 | 岷县 | 2315 | 104°01′ | 34°26′ | 600.0 | 6.9 | 雨养 | 1987–2004 |
气候类型 | 典型测站 | 海拔高度/m | 经度/E | 纬度/N | 年降水量/mm | 年平均气温/℃ | 灌溉模式 | 数据时间 |
---|---|---|---|---|---|---|---|---|
超干旱 | 敦煌 | 1139 | 94°41′ | 40°09′ | 40.2 | 9.5 | 灌溉 | 1981–2008 |
干旱 | 武威 | 1531 | 102°40′ | 37°55′ | 175.6 | 8.9 | 灌溉 | 1981–2017 |
半干旱 | 定西 | 1897 | 104°37′ | 35°35′ | 365.7 | 6.5 | 雨养 | 1986–2017 |
半湿润 | 临夏 | 1917 | 103°11′ | 35°35′ | 501.4 | 7.2 | 灌溉 | 1981–2017 |
湿润 | 岷县 | 2315 | 104°01′ | 34°26′ | 600.0 | 6.9 | 雨养 | 1987–2004 |
案例区 | 年平均气温/(℃/10 a) | 最高气温/(℃/10 a) | 最低气温/(℃/10 a) | 年降水量/(mm/10 a) |
---|---|---|---|---|
敦煌 | 0.62** | 0.94** | -0.24 | 2.50 |
武威 | 0.88** | 1.22** | 1.31 | -7.16 |
定西 | 0.94** | 0.68** | 1.04* | -10.66 |
临夏 | 0.48** | 0.76** | 0.32* | -20.30* |
岷县 | 0.80** | 1.06* | 1.26 | -52.70 |
案例区 | 年平均气温/(℃/10 a) | 最高气温/(℃/10 a) | 最低气温/(℃/10 a) | 年降水量/(mm/10 a) |
---|---|---|---|---|
敦煌 | 0.62** | 0.94** | -0.24 | 2.50 |
武威 | 0.88** | 1.22** | 1.31 | -7.16 |
定西 | 0.94** | 0.68** | 1.04* | -10.66 |
临夏 | 0.48** | 0.76** | 0.32* | -20.30* |
岷县 | 0.80** | 1.06* | 1.26 | -52.70 |
案例区 | 播种期 | 拔节期 | 开花期 | 成熟期 | 生长期 |
---|---|---|---|---|---|
敦煌 | -0.79 | -2.23* | -3.08** | -0.53 | -1.44 |
武威 | 1.21* | -0.15 | -2.00** | -2.01** | -3.26** |
定西 | 1.80* | 0.17 | -0.56 | -0.61 | -2.41* |
临夏 | 0.24 | 0.19 | -2.26** | -2.80** | -3.04** |
岷县 | 2.63 | -7.93** | -5.81** | -6.04* | -8.84** |
案例区 | 播种期 | 拔节期 | 开花期 | 成熟期 | 生长期 |
---|---|---|---|---|---|
敦煌 | -0.79 | -2.23* | -3.08** | -0.53 | -1.44 |
武威 | 1.21* | -0.15 | -2.00** | -2.01** | -3.26** |
定西 | 1.80* | 0.17 | -0.56 | -0.61 | -2.41* |
临夏 | 0.24 | 0.19 | -2.26** | -2.80** | -3.04** |
岷县 | 2.63 | -7.93** | -5.81** | -6.04* | -8.84** |
案例区 | 每穗粒数/(-/10 a) | 千粒重/(g/10 a) | 不孕穗数/(-/10 a) | 产量/(g/m2·10 a) |
---|---|---|---|---|
敦煌 | 6.64* | -1.59 | -8.68** | 64.39** |
武威 | -1.10 | -2.08** | 0.84 | 63.45** |
定西 | 6.28** | 1.70 | -0.59** | 6.69 |
临夏 | 3.02* | -1.15 | 1.01 | 27.72 |
岷县 | 2.04 | -0.15 | -12.30** | 86.24 |
案例区 | 每穗粒数/(-/10 a) | 千粒重/(g/10 a) | 不孕穗数/(-/10 a) | 产量/(g/m2·10 a) |
---|---|---|---|---|
敦煌 | 6.64* | -1.59 | -8.68** | 64.39** |
武威 | -1.10 | -2.08** | 0.84 | 63.45** |
定西 | 6.28** | 1.70 | -0.59** | 6.69 |
临夏 | 3.02* | -1.15 | 1.01 | 27.72 |
岷县 | 2.04 | -0.15 | -12.30** | 86.24 |
案例区 | 气候因子 | 生长期/d | 气象产量/(g/m2) | ||
---|---|---|---|---|---|
R | P | R | P | ||
敦煌 | 日均温/℃ | -0.59** | 0.00 | -0.20 | 0.45 |
≥0℃积温/(℃/d) | 0.66** | 0.00 | 0.54* | 0.03 | |
最高气温/℃ | -0.40* | 0.04 | -0.08 | 0.77 | |
最低气温/℃ | -0.43* | 0.02 | 0.12 | 0.66 | |
降水量/mm | 0.05 | 0.80 | 0.51* | 0.04 | |
日照时数/h | 0.65** | 0.00 | 0.28 | 0.28 | |
≥30℃天数 | 0.07 | 0.71 | -0.21 | 0.43 | |
武威 | 日均温/℃ | -0.77** | 0.00 | -0.13 | 0.52 |
≥0℃积温/℃ | -0.13 | 0.44 | 0.16 | 0.41 | |
最高气温/℃ | -0.53** | 0.00 | -0.14 | 0.49 | |
最低气温/℃ | -0.36* | 0.03 | -0.23 | 0.26 | |
降水量/mm | 0.27 | 0.11 | 0.02 | 0.93 | |
日照时数/h | 0.17 | 0.33 | -0.09 | 0.67 | |
≥30℃天数 | 0.28 | 0.10 | -0.41* | 0.03 | |
定西 | 日均温/℃ | -0.33 | 0.06 | 0.05 | 0.82 |
≥0℃积温/℃ | 0.33 | 0.06 | 0.09 | 0.70 | |
最高气温/℃ | -0.13 | 0.48 | 0.09 | 0.69 | |
最低气温/℃ | -0.23 | 0.21 | -0.25 | 0.26 | |
降水量/mm | 0.74** | 0.00 | 0.39* | 0.04 | |
日照时数/h | 0.22 | 0.22 | -0.11 | 0.62 | |
临夏 | 日均温/℃ | -0.67** | 0.00 | 0.22 | 0.27 |
≥0℃积温/℃ | 0.04 | 0.84 | 0.17 | 0.41 | |
最高气温/℃ | -0.38* | 0.02 | -0.18 | 0.38 | |
最低气温/℃ | -0.42* | 0.01 | 0.30 | 0.14 | |
降水量/mm | 0.33 | 0.05 | 0.08 | 0.72 | |
日照时数/h | -0.10 | 0.55 | -0.42* | 0.03 | |
岷县 | 日均温/℃ | -0.72** | 0.00 | 0.43 | 0.08 |
≥0℃积温/℃ | 0.58* | 0.01 | -0.04 | 0.89 | |
最高气温/℃ | -0.64* | 0.01 | 0.04 | 0.89 | |
最低气温/℃ | -0.08 | 0.78 | -0.20 | 0.46 | |
降水量/mm | 0.61* | 0.01 | -0.19 | 0.44 | |
日照时数/h | -0.27 | 0.28 | 0.41 | 0.09 |
案例区 | 气候因子 | 生长期/d | 气象产量/(g/m2) | ||
---|---|---|---|---|---|
R | P | R | P | ||
敦煌 | 日均温/℃ | -0.59** | 0.00 | -0.20 | 0.45 |
≥0℃积温/(℃/d) | 0.66** | 0.00 | 0.54* | 0.03 | |
最高气温/℃ | -0.40* | 0.04 | -0.08 | 0.77 | |
最低气温/℃ | -0.43* | 0.02 | 0.12 | 0.66 | |
降水量/mm | 0.05 | 0.80 | 0.51* | 0.04 | |
日照时数/h | 0.65** | 0.00 | 0.28 | 0.28 | |
≥30℃天数 | 0.07 | 0.71 | -0.21 | 0.43 | |
武威 | 日均温/℃ | -0.77** | 0.00 | -0.13 | 0.52 |
≥0℃积温/℃ | -0.13 | 0.44 | 0.16 | 0.41 | |
最高气温/℃ | -0.53** | 0.00 | -0.14 | 0.49 | |
最低气温/℃ | -0.36* | 0.03 | -0.23 | 0.26 | |
降水量/mm | 0.27 | 0.11 | 0.02 | 0.93 | |
日照时数/h | 0.17 | 0.33 | -0.09 | 0.67 | |
≥30℃天数 | 0.28 | 0.10 | -0.41* | 0.03 | |
定西 | 日均温/℃ | -0.33 | 0.06 | 0.05 | 0.82 |
≥0℃积温/℃ | 0.33 | 0.06 | 0.09 | 0.70 | |
最高气温/℃ | -0.13 | 0.48 | 0.09 | 0.69 | |
最低气温/℃ | -0.23 | 0.21 | -0.25 | 0.26 | |
降水量/mm | 0.74** | 0.00 | 0.39* | 0.04 | |
日照时数/h | 0.22 | 0.22 | -0.11 | 0.62 | |
临夏 | 日均温/℃ | -0.67** | 0.00 | 0.22 | 0.27 |
≥0℃积温/℃ | 0.04 | 0.84 | 0.17 | 0.41 | |
最高气温/℃ | -0.38* | 0.02 | -0.18 | 0.38 | |
最低气温/℃ | -0.42* | 0.01 | 0.30 | 0.14 | |
降水量/mm | 0.33 | 0.05 | 0.08 | 0.72 | |
日照时数/h | -0.10 | 0.55 | -0.42* | 0.03 | |
岷县 | 日均温/℃ | -0.72** | 0.00 | 0.43 | 0.08 |
≥0℃积温/℃ | 0.58* | 0.01 | -0.04 | 0.89 | |
最高气温/℃ | -0.64* | 0.01 | 0.04 | 0.89 | |
最低气温/℃ | -0.08 | 0.78 | -0.20 | 0.46 | |
降水量/mm | 0.61* | 0.01 | -0.19 | 0.44 | |
日照时数/h | -0.27 | 0.28 | 0.41 | 0.09 |
[1] | IPCC, Climate Change 2014:impacts,adaptation and vulnerability. Contribution of working group II to the fifth assessment report of the Intergovernmental Panel on Climate Change[R]. Cambridge & New York:Cambridge university Press, 2014. |
[2] | Trenberth K E, Jones P D, Ambenje P, et al. Observations:Surface and Atmospheric Climate Change.In:Climate Change 2007:The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon,S.,D.Qin,M.Manning,et al. (eds.)].Cambridge University Press,Cambridge,United Kingdom and New York,NY,USA, 2007. |
[3] |
Granata M U, Gratani L, Bracco F, et al. Carbon dioxide sequestration capability of an unmanaged old-growth broadleaf deciduous forest in a Strict Nature Reserve[J]. Journal of Sustainable Forestry, 2019,38(1):85-96.
doi: 10.1080/10549811.2018.1504685 URL |
[4] | 叶笃正, 符淙斌, 董文杰. 全球变化科学进展与未来趋势[J]. 地球科学进展, 2002,17(4):467-469. |
[5] |
Nemani R R, Keeling C D, Hashimoto H, et al. Climate-driven increases in global terrestrial net primary production from 1982 to 1999[J]. Science, 2003,300, 1560-1563.
doi: 10.1126/science.1082750 URL pmid: 12791990 |
[6] | Norby R J, Delucia E H, Gielen B, et al. Forest response to elevated CO2 is conserved across a broad range of productivity[J]. Proceedings of the Natlonal Academy Science USA, 2005,102:18052-18056. |
[7] |
Nippert J B, Knapp A K, Briggs J M. Intra-annual rainfall variability and grassland productivity:can the past predict the future?[J]. Plant Ecology, 2006,184:65-74.
doi: 10.1007/s11258-005-9052-9 URL |
[8] |
Zhou L M, Tucker C J, Kaufmann R K, et al. Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999[J]. Journal of Geophysical Research, 2001,106(D17):20069-20083.
doi: 10.1029/2000JD000115 URL |
[9] |
Sturm M, Racine C, Tape K. Increasing shrub abundance in the Arctic[J]. Nature, 2001,411:546-547.
doi: 10.1038/35079180 URL pmid: 11385559 |
[10] |
Anyamba A, Tucker C J. Analysis of Sahelian vegetation dynamics using NOAA-AVHRR NDVI data from 1981-2003[J]. Journal of Arid Environments, 2005,63:596-614.
doi: 10.1016/j.jaridenv.2005.03.007 URL |
[11] | Hein L, Ridder N. Desertification in the Sahel:a reinterpretation[J]. Global Change Biology, 2006,12:751-758. |
[12] | Badeck F W, Bondeau A, Bottcher K, et al. Responses of spring phenology to climate change[J]. New Phytologist, 2004,162, 295-309. |
[13] |
Lucht W, Schaphoff S, Erbrecht T, et al. Terrestrial vegetation redistribution and carbon balance under climate change[J]. Carbon Balance and Management, 2006,1:6.
doi: 10.1186/1750-0680-1-6 URL pmid: 16930462 |
[14] | Grace J, Berninger F, Nagy L. Impacts of climate change on the tree line[J]. Annals Botany, 2002,90:537-544. |
[15] | Gerten D, Lucht W, Schaphoff S, et al. Hydrologic resilience of the terrestrial biosphere[J]. Geophysical Research Letter, 2005,32:L21408. |
[16] |
Woodward F I, Lomas M R. Vegetation dynamics: simulating responses to climatic change[J]. Biological Reviews, 2004,79, 643-670.
doi: 10.1017/s1464793103006419 URL pmid: 15366766 |
[17] | 吕晓蓉, 吕晓英. 青藏高原东北部草地气候暖干化趋势分析[J]. 中国草地, 2002,24(4):8-13. |
[18] |
Habermann E, Martin J A B S, Contin D R, et al. Increasing atmospheric CO2 and canopy temperature induces anatomical and physiological changes in leaves of the C4 forage species Panicum maximum[J]. Plos One, 2019,14(2):e0212506.
doi: 10.1371/journal.pone.0212506 URL pmid: 30779815 |
[19] |
Isaev A S, Korovin G N, Bartalev S A, et al. Using remote sensing to assess Russian forest fire carbon emissions[J]. Climatic Change, 2002,55:235-249.
doi: 10.1023/A:1020221123884 URL |
[20] | Murdiyarso D, Adiningsih E S. Climatic anomalies,Indonesian vegetation fires and terrestrial carbon emissions[J]. Mitigation and Adaptation Strategies for Global Change, 2006,12:101-112. |
[21] |
Ahmed S, Griffin T, Kraner D, et al. Environmental factors variably impact tea secondary metabolites in the context of climate change:a systematic review[J]. Frontiers in Plant Science, 10:939.
doi: 10.3389/fpls.2019.00939 URL pmid: 31475018 |
[22] | Ahmed S, Stepp J R. Beyond yields:Climate change effects on specialty crop quality and 653 agroecological management[J]. Elementa Science of Anthropocene, 2016,4:000092. |
[23] |
Hossain A, Silva J A T, Lozovskaya M W, et al. High temperature combined with drought affffect rainfed spring wheat and barley in South-Eastern Russia: I.Phenology and growth[J]. Saudi Journal of Biological Sciences, 2012,19:473-487.
doi: 10.1016/j.sjbs.2012.07.005 URL pmid: 23961209 |
[24] |
Lobell D B, Asner G P. Climate and management contributions to recent trends in US agricultural yields[J]. Science, 2003,299,1032.
doi: 10.1126/science.1077838 URL pmid: 12586935 |
[25] |
Peng S, Huang J L, Sheehy J E, et al. Rice yields decline with higher night temperature from global warming[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004,101(27):9971-9975.
doi: 10.1073/pnas.0403720101 URL pmid: 15226500 |
[26] |
Morgounov A, Sonde K R, Abugalieva A, et al. Effect of climate change on spring wheat yields in North America and Eurasia in 1981-2015 and implications for breeding[J]. Plos One, 2018,13(10):e0204932.
doi: 10.1371/journal.pone.0204932 URL pmid: 30332438 |
[27] |
Ciais P, Reichstein M, Viovy N, et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003[J]. Nature, 2005,437:529-534.
doi: 10.1038/nature03972 URL pmid: 16177786 |
[28] | Wang F T. Impacts of climate change on cropping system and its implication for China[J]. Acta Meterologica Sinica, 1997,11(4):407-415. |
[29] | 秦大河. 气候变化的事实与影响及对策[J]. 中国科学基金, 2003,17(1):1-3. |
[30] | Lin Erda. Simulation on influence of global climate change on agriculture in China[M].China Agriculture Science and Technology Press, 1997. |
[31] | 施成晓, 陈婷, 王昌江, 等. 干旱胁迫对不同抗旱性小麦种子萌发及幼苗根芽生物量分配的影响[J]. 麦类作物学报, 2016,36(4):483-490. |
[32] | 李叶蓓, 陶洪斌, 王若男, 等. 干旱对玉米穗发育及产量的影响[J]. 中国生态农业学报, 2015,23(4):383-391. |
[33] | 张伟杨, 钱希旸, 李银银, 等. 土壤干旱对小麦生理性状和产量的影响[J]. 麦类作物学报, 2016,36(4):491-500. |
[34] | 丁一汇, 任国玉, 石广玉, 等. 气候变化国家评估报告(I):中国气候变化的历史和未来趋势[J]. 气候变化研究进展, 2006,2(1):3-8. |
[35] | 赵鸿, 何春雨, 李凤民, 等. 气候变暖对高寒阴湿地区春小麦生长发育和产量的影响[J]. 生态学杂志, 2008,27(12):2111-2117. |
[36] | 郭晓梅, 袁淑杰, 王劲松, 等. 四川春玉米气象干旱致灾因子危险性[J]. 兰州大学学报:自然科学版, 2017,53(1):79-92. |
[37] | 高素华, 郭建平, 王春乙. 气候变化对旱地作物生产的影响[J]. 应用气象学报, 1995,6(增刊):16-22. |
[38] | 王润元, 张强, 杨兴国, 等. 西北干旱地区小麦对气候变暖的响应[J]. 地球科学进展, 2005. 20(增刊):197-201. |
[39] | 王润元, 张强, 刘弘谊, 等. 气候变暖对河西走廊棉花生长的影响[J]. 气候变化研究进展, 2006,2(1):40-42. |
[40] |
秦大河, Thornas S, 等. IPCC第五次评估报告第一工作组报告的亮点结论[J]. 气候变化研究进展, 2014,10(1):1-6.
doi: 10.3969/j.issn.1673-1719.2014.01.001 URL |
[41] | IPCC, 2013:Change I C. The Physical Science Sasis;Working Group I Conteibution to the IPCC Fifth Assessment Report (AR5)[J]. Procedings of the Twelfth Session of Working Group I,Stockholm,Sweden, 2013,2326. |
[42] | 赵鸿, 王润元, 王鹤龄, 等. 西北干旱半干旱区春小麦生长对气候变暖响应的区域差异[J]. 地球科学进展, 2007,22(6):636-641. |
[43] |
Djanaguiraman M, Boyle D L, Welti R, et al. Decreased photosynthetic rate under high temperature in wheat is due to lipid desaturation,oxidation,acylation,and damage of organelles[J]. BMC Plant Biology, 2018:1-17.
doi: 10.1186/1471-2229-1-1 URL pmid: 11667950 |
[44] |
Dwivedi S K, Basu S, Kumar S, et al. Heat stress induced impairment of starch mobilisation regulates pollen viability and grain yield in wheat: Study in Eastern Indo-Gangetic Plains[J]. Field Crops Research, 2017,206:106-114.
doi: 10.1016/j.fcr.2017.03.006 URL |
[45] | Lawlor D W, Mitchell R A C. Crop ecosystem responses to climatic change:wheat.In:Reddy K R,Hodges H F,eds.Climate change and global crop productivity[J]. Wallingford:CAB International Press, 2000, 57-80. |
[46] |
Al-Khatib K, Paulsen G M. High temperature effects on photosynthetic processes in temperate and tropical cereals[J]. Crop Science, 1999,39(1):119-125.
doi: 10.2135/cropsci1999.0011183X003900010019x URL |
[47] | Prasad P V V, Djanaguiraman M. Response of floret fertility and individual grain weight of wheat to high temperature stress:sensitive stages and thresholds for temperature and duration[J]. Functional Plant Biology, 2014(41):1261-1269. |
[48] | 北方十三省协作组. 小麦干热风伤害机理的研究[J]. 作物学报, 1984,10(2):105-112. |
[49] |
Yang J C, Zhang J H, Liu K, et al. Abscisic acid and ethylene interact in wheat grains in response to soil drying during grain filling[J]. New Phytologist, 2006,171:293-303.
doi: 10.1111/nph.2006.171.issue-2 URL |
[50] |
Wang T, Zhang X, Li C. Growth, abscisic acid content,and carbon isotope composition in wheat cultivars grown under different soil moisture[J]. Biologia Plantarum, 2007,51(1):181-184.
doi: 10.1007/s10535-007-0036-6 URL |
[51] |
Kobata T, Palta J A, Turner T C. Rate of development of postanjournal water deficits and grain filling of spring wheat[J]. Crop Science, 1992,32:1238-1242.
doi: 10.2135/cropsci1992.0011183X003200050035x URL |
[52] |
Zhang J H, Sui X Z, Li B, et al. An improved water-use efficiency for winter wheat grown under reduced irrigation[J]. Field Crops Research, 1998,59:91-98.
doi: 10.1016/S0378-4290(98)00104-X URL |
[53] |
Yang J C, Zhang J H. Grain filling of cereals under soil drying[J]. New Phytologist, 2006,169:223-236.
doi: 10.1111/nph.2006.169.issue-2 URL |
[54] | 赵鸿, 肖国举, 王润元, 等. 气候变化对半干旱雨养区春小麦生长的影响[J]. 地球科学进展, 2007,22(3):322-327. |
[55] | 齐月, 王鹤龄, 张凯, 等. 气候变化对黄土高原半干旱区春小麦生长和产量的影响——以定西市为例[J]. 生态环境学报, 2019,28(7):1313-1321. |
[56] |
Kumagai E, Homma K, Kuroda E, et al. Finlay-Wilkinson’s regression coeffificient as a pre-screening criterion for yield responsiveness to elevated atmospheric CO2 concentration in crops[J]. Physiologia Plantarum, 2016,158:312-317.
doi: 10.1111/ppl.12468 URL pmid: 27174682 |
[57] | Jablonski L M, Wang X, Curtis P S. Plant reproduction under elevated CO2 conditions: a meta-analysis of reports on 79 crop and wild species[J]. New Phytologist, 2002,156:9-26. |
[58] | Varga B, Bencze S, Balla K, et al. Effects of the elevated atmospheric CO2 concentration on the water use efficiency of winter wheat[J]. Procedia Environmental Sciences, 2015,29:180-181. |
[59] |
Norby R J, Delucia E H, Gielen B, et al. Forest response to elevated CO2 is conserved across a broad range of productivity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005,102:18052-18056.
doi: 10.1073/pnas.0509478102 URL pmid: 16330779 |
[60] | Ainsworth E A, Long S P. What have we learned from 15 years of free-air CO2 enrichment (FACE)?A meta-analysis of the responses of photosynjournal,canopy properties and plant production to rising CO2[J]. New Phytologist, 2005,165:351-372. |
[61] | Khanboluki G, Mirseyed H, Holford P, et al. Effect of elevated atmospheric CO2 concentration on growth and physiology of wheat and sorghum under cadmium stress[J]. Communications in Soil Science and Plant Analysis, 2018,49(22):2867-2882. |
[62] |
Jiang F P, Shen Y Z, Ma C X, et al. Effects of TiO2 nanoparticles on wheat (Triticum aestivum L.) seedlings cultivated under super-elevated and normal CO2 conditions[J]. Plos One, 2017,12(5):e0178088.
doi: 10.1371/journal.pone.0178088 URL pmid: 28558015 |
[63] |
Long S P, Ainsworth E A, Rogers A, et al. Rising atmospheric carbon dioxide: plants FACE the future[J]. Annual Review of Plant Biology, 2004,55:591-628.
doi: 10.1146/annurev.arplant.55.031903.141610 URL pmid: 15377233 |
[64] |
Ziska L H. Evaluation of yield loss in field-grown sorghum from a C3 and C4 weed as a function of increasing atmospheric carbon dioxide[J]. Weed Science, 2003,51:914-918.
doi: 10.1614/WS-03-002R URL |
[65] | Carroll A L, Taylor S W, Regniere J, et al. Effects of climate change on range expansion by the mountain pine beetle in British Columbia[J]. Natural Resources Canada,Canadian Forest Service,Pacific Forestry Centre Information Report BC-X-399, Shore T L, Brooks J E and Stone J E,eds.,Victoria,British Columbia, 2004:223-232. |
[66] | Hogg E H, Bernier P Y. Climate change impacts on drought-prone forests in western Canada[J]. Forest Chroncle, 2005,81:675-682. |
[67] |
Wallach D, Martre P, Liu B, et al. Multi-model ensembles improve predictions of cropenvironment-management interactions[J]. Global Change Biology, 2018.
doi: 10.1111/gcb.15418 URL pmid: 33258510 |
[68] |
Liu Y J, Tao F L. Impacts and uncertainty analysis of elevated temperature and CO2 concentration on wheat biomass[J]. Journal of Geographical Sciences, 2012,22(6):1002-1012.
doi: 10.1007/s11442-012-0979-1 URL |
[69] |
Kheir A M S, Baroudy A E, Aiad M A, et al. Impacts of rising temperature,carbon dioxide concentration and sea level on wheat production in North Nile delta[J]. Science of the Total Environment, 2019,651:3161-3173.
doi: 10.1016/j.scitotenv.2018.10.209 URL |
[70] |
Tubiello F N, Amthor J A, Boote K, et al. Crop response to elevated CO2 and world food supply[J]. European Journal of Agronomy, 2007,26:215-223.
doi: 10.1016/j.eja.2006.10.002 URL |
[71] | Long S P, Ainsworth E A, Leakey A D B, et al. Global food insecurity.Treatment ofmajor food crops with elevated carbon dioxide or ozone under large-scale fully open-air conditions suggests recent models may have overestimated future yields[J]. Philosophical transactions of the royal society of london series b-biological sciences, 2005,360:2011-2020. |
[72] |
Long S P, Ainsworth E A, Leakey A D B, et al. Food for thought:lower expected crop yield stimulation with rising CO2 concentrations[J]. Science, 2006,312:1918-1921.
doi: 10.1126/science.1114722 URL pmid: 16809532 |
[1] | 王芳, 乔帅, 杨松涛, 宋伟, 廖安忠, 谭文芳. 淀粉型甘薯‘川薯231’的选育和优势特性鉴定[J]. 中国农学通报, 2023, 39(1): 16-21. |
[2] | 段青青, 韩梅梅, 谭月强, 张自坤. 补光时间和光质对温室甜椒叶片生长、碳代谢的影响[J]. 中国农学通报, 2023, 39(1): 37-44. |
[3] | 胡军, 多吉扎西, 拉巴, 格桑卓玛, 洛松曲珍. 西藏昌都市芒康县盐井葡萄生育期界定及气象条件分析[J]. 中国农学通报, 2023, 39(1): 103-106. |
[4] | 王强强, 杨自辉, 郭树江, 张剑挥, 王多泽. 灌水量对民勤干旱沙区骏枣生长和产量的影响[J]. 中国农学通报, 2022, 38(9): 71-74. |
[5] | 孙歌, 接伟光, 胡崴, 张颖智, 乔巍, 魏丽娜, 姜怡彤, 白莉. 菌根真菌及菌根辅助细菌对农作物发育的影响研究进展[J]. 中国农学通报, 2022, 38(9): 88-92. |
[6] | 纪洪亭, 赵韩伟, 王勇, 曾燕楠, 程润东, 王庆南, 赵荷娟. 2种植物生长延缓剂对向日葵穴盘苗素质的影响[J]. 中国农学通报, 2022, 38(8): 1-8. |
[7] | 董文彩, 刘宪斌, 李红梅, 赵双梅, 包金美, 沈健萍, 梁芳, 鲁美. 不同水平供钙量对木本观赏植物生长发育的影响[J]. 中国农学通报, 2022, 38(8): 42-50. |
[8] | 刘青松, 贾艳丽, 肖宇, 郭志顶, 纪明妹, 赵忠祥, 黄素芳, 岳明强, 刘震, 阎旭东, 徐玉鹏. 盐胁迫对苜蓿生理性状和生长性状的影响[J]. 中国农学通报, 2022, 38(8): 96-101. |
[9] | 曹秋梅, 王路义, 李晓曼, 李俊达, 刘梦田, 郑瑶, 王利华. 有效微生物对BALB/C小鼠生长性能、养分消化率和粪便氨气排放量的影响[J]. 中国农学通报, 2022, 38(7): 124-128. |
[10] | 邓裕帅, 王宇光, 於丽华, 耿贵. 水涝胁迫对不同土壤盐碱度下甜菜幼苗生长及光合特性的影响[J]. 中国农学通报, 2022, 38(7): 18-23. |
[11] | 付焱焱, 李云峰, 韩冬, 马树庆. 吉林省粮食主产区玉米生长季水分盈亏及其对产量的影响[J]. 中国农学通报, 2022, 38(7): 99-105. |
[12] | 李雪枫, 王坚, 叶晓园, 张秀婷, 王丽学. 苦瓜植株水浸提液对水稻种子萌发和秧苗生长的影响[J]. 中国农学通报, 2022, 38(6): 1-7. |
[13] | 吴佳佳, 朱佳红, 曹坳程, 颜冬冬, 王秋霞, 张春华, 李园. 云南省草果主要病原真菌鉴定及防治药剂筛选[J]. 中国农学通报, 2022, 38(6): 121-128. |
[14] | 郝建宇, 王伟军, 陈文朝, 刘景坤, 王岩, 寇宏立, 王尊文. 不同处理方式对‘蜜光’葡萄生长的影响[J]. 中国农学通报, 2022, 38(6): 48-57. |
[15] | 王辉, 陆鑫海, 杜美芳, 张琪. 1960—2019年海河平原地区夏玉米生长季高温特征分析[J]. 中国农学通报, 2022, 38(4): 62-68. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||