中国农学通报 ›› 2021, Vol. 37 ›› Issue (21): 59-65.doi: 10.11924/j.issn.1000-6850.casb2020-0616
所属专题: 资源与环境
张美芝1(), 耿煜函1, 张薇1, 林昕1, 温佳旭1, 陈雪丽2, 肖洋1(
)
收稿日期:
2020-11-03
修回日期:
2020-12-23
出版日期:
2021-07-25
发布日期:
2021-07-29
通讯作者:
肖洋
作者简介:
张美芝,女,1994年出生,山东潍坊人,硕士,研究方向:土壤养分。通信地址:150080 黑龙江省哈尔滨市南岗区学府路74号 黑龙江大学现代农业与生态环境学院,Tel:0451-86609487,E-mail: 基金资助:
Zhang Meizhi1(), Geng Yuhan1, Zhang Wei1, Lin Xin1, Wen Jiaxu1, Chen Xueli2, Xiao Yang1(
)
Received:
2020-11-03
Revised:
2020-12-23
Online:
2021-07-25
Published:
2021-07-29
Contact:
Xiao Yang
摘要:
生物炭作为一种土壤改良剂应用到农田土壤中,能够在很大程度上改善土壤物理结构、提高土壤养分转化效率,缓解不合理生产制度所造成的土壤退化问题,对促进农业增产、保障国家粮食安全、提高土壤资源的可持续利用具有重要意义。本文通过分析和总结国内外专家对秸秆生物炭在农田中应用的研究成果,提出今后的研究方向,为农业生产中生物炭的应用提供理论支持。通过查阅和分析相关文献、资料,重点讨论了不同材料、热解温度的生物炭对农田土壤理化性质和作物生长的影响。目前,国内外对生物炭在改善土壤质量和生产力等方面的应用进行大量的试验,虽取得了一定的成果,但尚未形成一套完整的理论体系来阐述生物炭的生产方式、施用量等对农业生产的影响。土壤是一个复杂的环境,多种因素起着冲突作用,土壤—生物炭的相互作用还未完全被了解,在今后的研究中可适当调整实验设计,最大限度提高生物炭性能。
中图分类号:
张美芝, 耿煜函, 张薇, 林昕, 温佳旭, 陈雪丽, 肖洋. 秸秆生物炭在农田中的应用研究综述[J]. 中国农学通报, 2021, 37(21): 59-65.
Zhang Meizhi, Geng Yuhan, Zhang Wei, Lin Xin, Wen Jiaxu, Chen Xueli, Xiao Yang. The Role of Straw Biochar in Farmland: A Review[J]. Chinese Agricultural Science Bulletin, 2021, 37(21): 59-65.
生物炭类型 | 生物炭 | 土壤类型 | 作物 | 产量/%(与对照相比) | 来源 |
---|---|---|---|---|---|
松木屑 | 22 t /hm2 | 库布齐沙漠土 | 高粱 | + 18 | [81] |
塔尔沙漠土 | + 22 | ||||
谷壳和棉籽壳 | 5% | 砂壤土 | 番茄 | +20 | [52] |
木质 | 30 t/hm2 | 粉壤土 | 小麦 | + 32.1 | [82] |
60 t/hm2 | + 23.6 | ||||
花生壳和锯木 | 20 t/hm2 | 砂质黏壤土 | 西芹 | + 31.6 | [83] |
160 t/hm2 | +30.3 | ||||
硬木和软木 | 5 % W/W | 砂壤土 | 马铃薯 | 显著增加 | [77] |
生物炭类型 | 生物炭 | 土壤类型 | 作物 | 产量/%(与对照相比) | 来源 |
---|---|---|---|---|---|
松木屑 | 22 t /hm2 | 库布齐沙漠土 | 高粱 | + 18 | [81] |
塔尔沙漠土 | + 22 | ||||
谷壳和棉籽壳 | 5% | 砂壤土 | 番茄 | +20 | [52] |
木质 | 30 t/hm2 | 粉壤土 | 小麦 | + 32.1 | [82] |
60 t/hm2 | + 23.6 | ||||
花生壳和锯木 | 20 t/hm2 | 砂质黏壤土 | 西芹 | + 31.6 | [83] |
160 t/hm2 | +30.3 | ||||
硬木和软木 | 5 % W/W | 砂壤土 | 马铃薯 | 显著增加 | [77] |
[1] | 邹继军, 张印生, 赵文才, 等. 黑龙江省秸秆综合利用分析[J]. 现代化农业, 2020(6):64-65. |
[2] | 钟平, 张超旭, 王丽, 等. 秸秆资源综合利用研究[J]. 现代农业, 2020(6):4-5. |
[3] | 张倩, 刘冰洁, 余璐, 等. 生物炭对滨海湿地盐碱土壤碳氮循环的影响[J]. 自然资源学报, 2019, 34(12):2529-2543. |
[4] |
Lehmann J. A handful of carbon.[J]. Nature, 2007, 447(7141):143-144.
doi: 10.1038/447143a URL |
[5] | Dong X, Singh B P, Li G, et al. Biochar application constrained native soil organic carbon accumulation from wheat residue inputs in a long-term wheat-maize cropping system. 2018, 252:200-207. |
[6] | 何绪生, 耿增超, 佘雕, 等. 生物炭生产与农用的意义及国内外动态[J]. 农业工程学报, 2011, 27(2):1-7. |
[7] |
Ogawa M, Okimori Y. Pioneering works in biochar research, Japan[J]. Soil Research, 2010, 48(7):489-500.
doi: 10.1071/SR10006 URL |
[8] | 刘晓雨, 卞荣军, 陆海飞, 等. 生物质炭与土壤可持续管理:从土壤问题到生物质产业[J]. 中国科学院院刊, 2018, 33(2):184-190. |
[9] |
Jin Z, Chen C, Chen X, et al. Soil acidity, available phosphorus content, and optimal biochar and nitrogen fertilizer application rates: A five-year field trial in upland red soil, China[J]. Field Crops Research, 2019, 232:77-87.
doi: 10.1016/j.fcr.2018.12.013 URL |
[10] | 张伟明, 陈温福, 孟军, 等. 东北地区秸秆生物炭利用潜力、产业模式及发展战略研究[J]. 中国农业科学, 2019, 52(14):2406-2424. |
[11] | 夏融, 李恋卿, 潘根兴. 生物质炭生产与绿色农业应用——从技术到模式[J]. 国际学术动态, 2018(4):34-37. |
[12] | 陈红霞, 杜章留, 郭伟, 等. 施用生物炭对华北平原农田土壤容重、阳离子交换量和颗粒有机质含量的影响[J]. 应用生态学报, 2011, 22(11):2930-2934. |
[13] |
Islam M, Halder M, Siddique M A B, et al. Banana peel biochar as alternative source of potassium for plant productivity and sustainable agriculture[J]. International Journal of Recycling of Organic Waste in Agriculture, 2019, 8(1s):407-413.
doi: 10.1007/s40093-019-00313-8 URL |
[14] |
Raboin L M, Razafimahafaly A H D, Rabenjarisoa M B, et al. Improving the fertility of tropical acid soils: Liming versus biochar application? A long term comparison in the highlands of Madagascar[J]. Field Crops Research, 2016, 199:99-108.
doi: 10.1016/j.fcr.2016.09.005 URL |
[15] | Kishimoto S, Sugiura G. Symposium of Forest Products Research International-Achievements and the Future[J]. Pretoria, South Africa, 1985:12-23. |
[16] | 宋婷婷, 陈义轩, 李洁, 等. 不同材料生物炭和施用量对小麦和黄瓜种子萌发和根茎生长的影响[J]. 农业环境科学学报, 2019, 38(2):297-306. |
[17] |
Jeffery S, Abalos D, Prodana M, et al. Biochar boosts tropical but not temperate crop yields[J]. Environmental Research Letters, 2017, 12(5):053001.
doi: 10.1088/1748-9326/aa67bd URL |
[18] | Xie T, Reddy K R, Wang C, et al. Characteristics and applications of biochar for environmental remediation: A review[J]. Critical Reviews in Environmental ence &Technology, 2015, 45(9):939-969. |
[19] |
Ahmad M, Rajapaksha A U, Lim J E, et al. Biochar as a sorbent for contaminant management in soil and water: A review[J]. Chemosphere, 2014, 99(3):19-33.
doi: 10.1016/j.chemosphere.2013.10.071 URL |
[20] | 陈温福, 张伟明, 孟军. 农用生物炭研究进展与前景[J]. 中国农业科学, 2013, 46(16):3324-3333. |
[21] | Tindall R, Apffel-Marglin F, Shearer D. Sacred soil[M]. Berkeley:North Atlantic Books, 2017:62-64. |
[22] |
Lehmann J. A handful of carbon[J]. Nature, 2007, 447(7141):143-144.
doi: 10.1038/447143a URL |
[23] |
Pan G, Smith P, Pan W. The role of soil organic matter in maintaining the productivity and yield stability of cereals in China[J]. Agriculture Ecosystems and Environment, 2009, 129(1):344-348.
doi: 10.1016/j.agee.2008.10.008 URL |
[24] |
Zhang A, Cui L, Pan G, et al. Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China[J]. Agriculture, Ecosystems and Environment, 2010, 139(4):469-475.
doi: 10.1016/j.agee.2010.09.003 URL |
[25] | Jirka S, Tomlinson T. State of the Biochar Industry: a survey of commercial activity in the biochar field[J]. International Biochar Initiative, 2014, 46:61-73. |
[26] |
Sun Y, Gao B, Yao Y, et al. Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties[J]. Chemical Engineering Journal, 2014, 240:574-578.
doi: 10.1016/j.cej.2013.10.081 URL |
[27] |
Wang S, Gao B, Zimmerman A, et al. Physicochemical and sorptive properties of biochars derived from woody and herbaceous biomass[J]. Chemosphere, 2015, 134:257-262.
doi: 10.1016/j.chemosphere.2015.04.062 URL |
[28] | Park J H, Ok Y S, Kim S H, et al. Characteristics of biochars derived from fruit tree pruning wastes and their effects on lead adsorption[J]. Journal of the Korean Society for Applied Biological Chemistry, 2015, 58(5):1738-2203. |
[29] |
Singh B, Singh B P, Cowie A L. Characterisation and evaluation of biochars for their application as a soil amendment[J]. Soil Research, 2010, 48(7):516-525.
doi: 10.1071/SR10058 URL |
[30] |
Al-Wabel M I, Al-Omran A, El-Naggar A H, et al. Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes[J]. Bioresource Technology, 2013, 131:374-379.
doi: 10.1016/j.biortech.2012.12.165 URL |
[31] |
Cantrell K B, Hunt P G, Uchimiya M, et al. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar[J]. Bioresource Technology, 2012, 107:419-428.
doi: 10.1016/j.biortech.2011.11.084 pmid: 22237173 |
[32] |
Zimmerman A R, Gao B, Ahn M Y. Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils[J]. Soil Biology and Biochemistry, 2011, 43(6):1169-1179.
doi: 10.1016/j.soilbio.2011.02.005 URL |
[33] |
Keith A, Singh B, Singh B P. Interactive priming of biochar and labile organic matter mineralization in a smectite-rich soil[J]. Environmental science and technology, 2011, 45(22):9611-9618.
doi: 10.1021/es202186j URL |
[34] | 魏永霞, 张翼鹏, 张雨凤, 等. 黑土坡耕地连续施加生物炭的土壤改良和节水增产效应[J]. 农业机械学报, 2018, 49(2):284-291,312. |
[35] | 刘卉, 周清明, 黎娟, 等. 生物炭施用量对土壤改良及烤烟生长的影响[J]. 核农学报, 2016, 30(7):1411-1419. |
[36] | Glaser B, Lehmann J, Zech W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal-a review[J]. Biology & Fertility of Soils, 2002, 35(4):219-230. |
[37] |
Keith A, Singh B, Dijkstra F A. Biochar reduces the rhizosphere priming effect on soil organic carbon[J]. Soil Biology and Biochemistry, 2015, 88:372-379.
doi: 10.1016/j.soilbio.2015.06.007 URL |
[38] | 刘园, Jamal Khan M, 靳海洋,等.秸秆生物炭对潮土作物产量和土壤性状的影响[J]. 土壤学报, 2015, 52(4):849-858. |
[39] | 殷大伟. 生物炭改良白浆土的初步研究[D]. 沈阳:沈阳农业大学, 2013:1-145. |
[40] | 王月玲, 耿增超, 尚杰, 等. 施用生物炭后塿土土壤有机碳、氮及碳库管理指数的变化[J]. 农业环境科学学报, 2016, 35(3):532-539. |
[41] |
Hardie M, Clothier B, Bound S, et al. Does biochar influence soil physical properties and soil water availability?[J]. Plant and Soil, 2014, 376(1-2):347-361.
doi: 10.1007/s11104-013-1980-x URL |
[42] | 宋亮, 任天宝, 李敏, 等. 不同生物炭用量对湘西植烟土壤养分的影响[J]. 河南农业科学, 2017, 46(2):43-48. |
[43] |
Yuan P, Wang J, Pan Y, et al. Review of biochar for the management of contaminated soil: Preparation, application and prospect[J]. Science of the Total Environment, 2019, 659:473-490.
doi: 10.1016/j.scitotenv.2018.12.400 URL |
[44] | 李明, 李忠佩, 刘明, 等. 不同秸秆生物炭对红壤性水稻土养分及微生物群落结构的影响[J]. 中国农业科学, 2015, 48(7):1361-1369. |
[45] | 张祥, 王典, 姜存仓, 等. 生物炭对我国南方红壤和黄棕壤理化性质的影响[J]. 中国生态农业学报, 2013, 21(8):979-984. |
[46] |
Sarfraz R, Shakoor A, Abdullah M, et al. Impact of integrated application of biochar and nitrogen fertilizers on maize growth and nitrogen recovery in alkaline calcareous soil[J]. Soil Science and Plant Nutrition, 2017, 63(5):1-11.
doi: 10.1080/00380768.2016.1244652 URL |
[47] |
Uexküll H R, Mutert E. Global extent, development and economic impact of acid soils[J]. Plant and Soil, 1995, 171(1):1-15.
doi: 10.1007/BF00009558 URL |
[48] | 黄国勤, 王兴祥, 钱海燕, 等. 施用化肥对农业生态环境的负面影响及对策[J]. 生态环境, 2004(4):656-660. |
[49] |
Chintala R, Schumacher T E, Mcdonald L M, et al. Phosphorus sorption and availability from biochars and soil/ biochar Mixtures[J]. Clean Soil Air Water, 2014, 42(5):626-634.
doi: 10.1002/clen.v42.5 URL |
[50] |
Schulz H, Glaser B. Effects of biochar compared to organic and inorganic fertilizers on soil quality and plant growth in a greenhouse experiment[J]. Journal of Plant Nutrition and Soil Science, 2012, 175(3):410-422.
doi: 10.1002/jpln.v175.3 URL |
[51] | Lehmann J, Ithaca, York N, et al. Biochar for Environmental Management: Science, Technology and Implementation[J]. Science and Technology; Earthscan, 2015, 25(1):15801-15811. |
[52] |
Akhtar S S, Li G, Andersen M N, et al. Biochar enhances yield and quality of tomato under reduced irrigation[J]. Agricultural Water Management, 2014, 138:37-44.
doi: 10.1016/j.agwat.2014.02.016 URL |
[53] | 刘卉, 周清明, 黎娟, 等. 生物炭对植烟土壤养分的影响[J]. 中国农业科技导报, 2016, 18(3):150-155. |
[54] |
Novak J, Sigua G, Watts D, et al. Biochars impact on water infiltration and water quality through a compacted subsoil layer[J]. Chemosphere, 2016, 142(1):160-167.
doi: 10.1016/j.chemosphere.2015.06.038 URL |
[55] |
Baronti S, Vaccari F P, Miglietta F, et al. Impact of biochar application on plant water relations in Vitis vinifera (L.)[J]. European Journal of Agronomy, 2014, 53:38-44.
doi: 10.1016/j.eja.2013.11.003 URL |
[56] | Zhao W, Zhou Q, Tian Z, et al. Apply biochar to ameliorate soda saline-alkali land, improve soil function and increase corn nutrient availability in the Songnen Plain[J]. Science of the Total Environment, 2020, 722:137-428. |
[57] | 张晗芝, 黄云, 刘钢, 等. 生物炭对玉米苗期生长、养分吸收及土壤化学性状的影响[J]. 生态环境学报, 2010, 19(11):2713-2717. |
[58] |
Prapagdee S, Tawinteung N. Effects of biochar on enhanced nutrient use efficiency of green bean, Vigna radiata L.[J]. Environmental Science and Pollution Research, 2017, 24(10):9460-9467.
doi: 10.1007/s11356-017-8633-1 URL |
[59] |
Zhou L, Cai D, He L, et al. Fabrication of a high-performance fertilizer to control the loss of water and nutrient using micro/nano networks[J]. Acs Sustainable Chemistry and Engineering, 2015, 3(4):645-653.
doi: 10.1021/acssuschemeng.5b00072 URL |
[60] |
Gao S, Deluca T H, Cleveland C C. Biochar additions alter phosphorus and nitrogen availability in agricultural ecosystems: A meta-analysis[J]. Science of the Total Environment, 2019, 654:463-472.
doi: 10.1016/j.scitotenv.2018.11.124 |
[61] |
Abbas A, Yaseen M, Khalid M, et al. Effect of biochar-amended urea on nitrogen economy of soil for improving the growth and yield of wheat (Triticum Aestivum L.) under field condition[J]. Journal of Plant Nutrition, 2017, 40(16):2303-2311.
doi: 10.1080/01904167.2016.1267746 URL |
[62] |
Kätterer T, Roobroeck D, Andrén O, et al. Biochar addition persistently increased soil fertility and yields in maize-soybean rotations over 10 years in sub-humid regions of Kenya[J]. Field Crops Research, 2019, 235:18-26.
doi: 10.1016/j.fcr.2019.02.015 URL |
[63] |
Kamau S, Karanja N K, Ayuke F O, et al. Short-term influence of biochar and fertilizer-biochar blends on soil nutrients, fauna and maize growth[J]. Biology and Fertility of Soils, 2019, 55(7):661-673.
doi: 10.1007/s00374-019-01381-8 URL |
[64] | Widowati W, Utomo H, Soehono L A, et al. Effect of biochar on the release and loss of nitrogen from urea fertilization[J]. Journal of Agriculture and Food Technology 2011, 1:127-132. |
[65] |
Gaskin J W, Speir R A, Harris K, et al. Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrient status, and yield[J]. Agronomy Journal, 2010, 102(2):623-633.
doi: 10.2134/agronj2009.0083 URL |
[66] |
Agegnehu G, Bass A M, Nelson P N, et al. Benefits of biochar, compost and biochar-compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil[J]. Science of the Total Environment, 2016, 543(FEB.1PT.A):295-306.
doi: 10.1016/j.scitotenv.2015.11.054 URL |
[67] |
Lehmann J, Steiner C, Nehls T, et al. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments[J]. Plant and Soil, 2003, 249(2):343-357.
doi: 10.1023/A:1022833116184 URL |
[68] |
Kimetu J M, Lehmann J, Ngoze O S, et al. Reversibility of soil productivity decline with organic matter of differing quality along a degradation gradient[J]. Ecosystems, 2008, 11(5):726-739.
doi: 10.1007/s10021-008-9154-z URL |
[69] |
Kätterer T, Roobroeck D, Andrén O, et al. Biochar addition persistently increased soil fertility and yields in maize-soybean rotations over 10 years in sub-humid regions of Kenya[J]. Field Crops Research, 2019, 235:18-26.
doi: 10.1016/j.fcr.2019.02.015 URL |
[70] | 余端, 冯牧野, 李燕, 等. 秸秆生物炭对小白菜生长发育及土壤性质的影响[J]. 南方农业, 2019, 13(34):45-47. |
[71] | 张继旭, 张继光, 张忠锋, 等. 秸秆生物炭对烤烟生长发育、土壤有机碳及酶活性的影响[J]. 中国烟草科学, 2016, 37(5):16-21. |
[72] |
Scheifele M, Hobi A, Buegger F, et al. Impact of pyrochar and hydrochar on soybean (Glycine max L.) root nodulation and biological nitrogen fixation[J]. Journal of Plant Nutrition and Soil Science, 2017, 180(2):199-211.
doi: 10.1002/jpln.201600419 URL |
[73] |
Park J H, Choppala G K, Bolan N S, et al. Biochar reduces the bioavailability and phytotoxicity of heavy metals[J]. Plant and Soil, 2011, 348(1-2):439-451.
doi: 10.1007/s11104-011-0948-y URL |
[74] |
Haider G, Koyro H, Azam F, et al. Biochar but not humic acid product amendment affected maize yields via improving plant-soil moisture relations[J]. Plant Soil, 2015, 395(1):141-157.
doi: 10.1007/s11104-014-2294-3 URL |
[75] |
Pressler Y, Foster E J, Moore J C, et al. Coupled biochar amendment and limited irrigation strategies do not affect a degraded soil food web in a maize agroecosystem, compared to the native grassland[J]. Global Change Biology Bioenergy, 2017, 9(8):1344-1355.
doi: 10.1111/gcbb.2017.9.issue-8 URL |
[76] | 南江宽, 王浩, 王劲松, 等. 不同水分条件下秸秆生物炭对高粱生长和养分含量的影响[J]. 植物营养与肥料学报, 2018, 24(4):1027-1038. |
[77] |
Akhtar S S, Andersen M N, Liu F. Biochar mitigates salinity stress in potato[J]. Journal of Agronomy and Crop Science, 2015, 201(5):368-378.
doi: 10.1111/jac.12132 URL |
[78] |
Akhtar S S, Andersen M N, Liu F. Residual effects of biochar on improving growth, physiology and yield of wheat under salt stress[J]. Agricultural Water Management, 2015, 158:61-68.
doi: 10.1016/j.agwat.2015.04.010 URL |
[79] |
Vaccari F P, Maienza A, Miglietta F, et al. Biochar stimulates plant growth but not fruit yield of processing tomato in a fertile soil[J]. Agriculture, Ecosystems and Environment, 2015, 207:163-170.
doi: 10.1016/j.agee.2015.04.015 URL |
[80] |
Stefanie K, Franz Z, Bernhard W, et al. Biochar application to temperate soils: Effects on soil fertility and crop growth under greenhouse conditions[J]. Journal of Plant Nutrition and Soil Science, 2014, 177(1):3-15.
doi: 10.1002/jpln.v177.1 URL |
[81] |
Laghari M, Mirjat M S, Hu Z, et al. Effects of biochar application rate on sandy desert soil properties and sorghum growth[J]. Catena, 2015, 135:313-320.
doi: 10.1016/j.catena.2015.08.013 URL |
[82] |
Vaccari F P, Baronti S, Lugato E, et al. Biochar as a strategy to sequester carbon and increase yield in durum wheat[J]. European Journal of Agronomy, 2011, 34(4):231-238.
doi: 10.1016/j.eja.2011.01.006 URL |
[83] | 李丽, 王雪艳, 田彦芳, 等. 生物质炭对土壤养分及设施蔬菜产量与品质的影响[J]. 植物营养与肥料学报, 2018, 24(5):1237-1244. |
[84] | 肖婧, 徐虎, 蔡岸冬, 等. 生物质炭特性及施用管理措施对作物产量影响的整合分析[J]. 中国农业科学, 2017, 50(10):1830-1840. |
[85] |
Liu X, Zhang A, Ji C, et al. Biochar's effect on crop productivity and the dependence on experimental conditions—a meta-analysis of literature data[J]. Plant and Soil, 2013, 373(1-2) :583-594.
doi: 10.1007/s11104-013-1806-x URL |
[86] |
Güereña D, Lehmann J, Hanley K, et al. Nitrogen dynamics following field application of biochar in a temperate North American maize-based production system[J]. Plant and Soil, 2013, 365(1-2) :239-254.
doi: 10.1007/s11104-012-1383-4 URL |
[87] |
Khorram M S, Fatemi A, Khan M A, et al. Potential risk of weed outbreak by increasing biochar's application rates in slow-growth legume, lentil (Lens culinaris Medik.)[J]. Journal of the Science of Food and Agriculture, 2018, 98(6):2080-2088.
doi: 10.1002/jsfa.8689 pmid: 28940378 |
[1] | 曾婕, 余浪, 达布希拉图, 李云驹. 磷基土壤调理剂在低磷红壤上对小白菜生长的影响[J]. 中国农学通报, 2022, 38(9): 81-87. |
[2] | 周小红. 基于多元回归分析的农作物产量估测模型研究[J]. 中国农学通报, 2022, 38(8): 152-156. |
[3] | 王丽娜, 杨瑛, 杜苏. 生物炭施入对盐碱土壤影响的研究现状[J]. 中国农学通报, 2022, 38(8): 81-87. |
[4] | 鲍广灵, 陶荣浩, 杨庆波, 胡含秀, 李丁, 马友华. 微生物修复农田土壤重金属污染技术研究进展[J]. 中国农学通报, 2022, 38(6): 69-74. |
[5] | 韩晓芳, 田晓明, 杨永利, 张敬智, 张清, 张凯, 张涛, 贾林. 2种土壤复合改良剂对滨海盐渍土的改良及肥力作用[J]. 中国农学通报, 2022, 38(5): 54-59. |
[6] | 王岩, 王丽伟, 赵洪颜, 赵敏, 杨洪岩. 不同人参栽培土壤养分及微生物群落组成特征解析[J]. 中国农学通报, 2022, 38(5): 60-68. |
[7] | 丁琪洵, 汤萌萌, 李子杰, 江文娟, 张学伟, 马友华. 涡阳县高标准农田耕地质量等级评价研究[J]. 中国农学通报, 2022, 38(4): 46-52. |
[8] | 胡雪纯, 解文艳, 马晓楠, 周怀平, 杨振兴, 刘志平. 长期秸秆还田对旱地玉米土壤有机碳及碳库管理指数的影响[J]. 中国农学通报, 2022, 38(34): 8-13. |
[9] | 周先林, 覃琴, 孟永明, 王龙, 胡成成, 朱海勇, 赖波. 不同改良剂对新疆盐碱土壤改良及棉花生长的影响[J]. 中国农学通报, 2022, 38(34): 91-96. |
[10] | 张云, 萨如拉, 包桂荣, 萨茹拉其其格, 邰继承, 李响. 秸秆降解菌系的筛选及其对酸碱度的响应[J]. 中国农学通报, 2022, 38(28): 21-27. |
[11] | 张楠, 潘仕球, 乔云发, 朱保国, 苗淑杰. 秸秆还田及添加生物炭对黑土玉米生长季N2O排放的影响[J]. 中国农学通报, 2022, 38(27): 79-85. |
[12] | 聂晓瑀, 于春静, 卢倩, 崔继哲. 微生物在农作物秸秆好氧堆肥过程中的研究进展[J]. 中国农学通报, 2022, 38(26): 76-81. |
[13] | 郭书亚, 尚赏, 王坤, 汤其宁, 张艳, 付国占, 卢广远. 秸秆覆盖深松对夏玉米田土壤酶活性的影响[J]. 中国农学通报, 2022, 38(25): 96-101. |
[14] | 张雪廷, 袁恩平, 王灿, 李罡, 王绍祥, 李云, 赵水灵, 钟正阳, 李桂琼, 杨迪, 夏攀, 许姹, 赵昶灵. 云南文山州畜禽饲用秸秆的糖、蛋白和脂类养分的含量和综合等级[J]. 中国农学通报, 2022, 38(24): 145-150. |
[15] | 黄雅丽, 马风云, 王霞, 郝军, 杜振宇, 刘方春, 石群, 马丙尧. 滴灌水量对核桃幼苗生长的影响[J]. 中国农学通报, 2022, 38(22): 62-68. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||