| [1] | JAKOB M, OLIVER O, KLAUS K. Antibiotic residues in livestock manure: does the EU risk assessment sufficiently protect against microbial toxicity and selection of resistant bacteria in the environment?[J]. Jouranl of hazardous materials, 2019, 379:120807. | 
																													
																						| [2] | PAVLA K, LESLIE C, THOMAS J M, et al. Occurrence and toxicity of antibiotics in the aquatic environment: a review[J]. Chemosphere, 2020, 251:126351.  doi: 10.1016/j.chemosphere.2020.126351    
																																					URL
 | 
																													
																						| [3] | PASCAL V, CORINNE A, NATHALIE J, et al. When pharmaceutical drugs become environmental pollutants: potential neural effects and underlying mechanisms[J]. Environmental research, 2022, 205:112495.  doi: 10.1016/j.envres.2021.112495    
																																					URL
 | 
																													
																						| [4] | 赵晓东, 乔青青, 秦宵睿, 等. 近15年我国土壤抗生素污染特征与生物修复研究进展[J]. 环境科学, 2023, 44(7):4059-4076. | 
																													
																						| [5] | ALLEN H K, JUSTIN D, HELENA H W, et al. Call of the wild: antibiotic resistance genes in natural environments[J]. Nature reviews microbiology, 2010, 8(4):251-259.  doi: 10.1038/nrmicro2312    
																																																	pmid: 20190823
 | 
																													
																						| [6] | LI M, YANG L, HAW Y, et al. Occurrence, spatial distribution and ecological risks of antibiotics in soil in urban agglomeration[J]. Journal of environmental sciences, 2023, 125:678-690.  doi: 10.1016/j.jes.2022.03.029    
																																																	pmid: 36375949
 | 
																													
																						| [7] | BRUCE E L, KORNEEL R. Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies[J]. Science, 2012, 337(6095):686-690.  doi: 10.1126/science.1217412    
																																																	pmid: 22879507
 | 
																													
																						| [8] | ZHAO X D, LI X J, LI Y, et al. Shifting interactions among bacteria, fungi and archaea enhance removal of antibiotics and antibiotic resistance genes in the soil bioelectrochemical remediation[J]. Biotechnology for biofuels, 2019, 12:160-173.  doi: 10.1186/s13068-019-1500-1    
																																																	pmid: 31249623
 | 
																													
																						| [9] | 赵晓东, 李晓晶, 赵鹏宇, 等. 土壤微生物电化学系统降解四环素的机理[J]. 中国环境科学, 2021, 41(2):778-786. | 
																													
																						| [10] | SONG H L, ZHANG C, LU Y X, et al. Enhanced removal of antibiotics and antibiotic resistance genes in a soil microbial fuel cell via in situ remediation of agricultural soils with multiple antibiotics[J]. Science of the total environment, 2022, 829:154406.  doi: 10.1016/j.scitotenv.2022.154406    
																																					URL
 | 
																													
																						| [11] | ZHANG K, WANG T T, CHEN J, et al. The reduction and fate of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in microbial fuel cell (MFC) during treatment of livestock wastewater[J]. Journal of contaminant hydrology, 2022, 247:103981.  doi: 10.1016/j.jconhyd.2022.103981    
																																					URL
 | 
																													
																						| [12] | YANG X L, WANG Q, LI T, et al. Antibiotic removal and antibiotic resistance genes fate by regulating bioelectrochemical characteristics in microbial fuel cells[J]. Bioresource technology, 2022, 348:126752.  doi: 10.1016/j.biortech.2022.126752    
																																					URL
 | 
																													
																						| [13] | CHEN J, WANG T T, ZHANG K, et al. The fate of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) from livestock wastewater (dominated by quinolone antibiotics) treated by microbial fuel cell (MFC)[J]. Ecotoxicology and environmental safety, 2021, 218:112267.  doi: 10.1016/j.ecoenv.2021.112267    
																																					URL
 | 
																													
																						| [14] | LI S G, JIANG J W, SHIH-HSIN H, et al. Sustainable conversion of antibiotic wastewater using microbial fuel cells: energy harvesting and resistance mechanism analysis[J]. Chemosphere, 2023, 313:137584.  doi: 10.1016/j.chemosphere.2022.137584    
																																					URL
 | 
																													
																						| [15] | WANG Y Z, ZHANG H M, FENG Y J, et al. Bio-Electron-Fenton (BEF) process driven by sediment microbial fuel cells (SMFCs) for antibiotics desorption and degradation[J]. Biosensors and bioelectronics, 2019, 136:8-15.  doi: 10.1016/j.bios.2019.04.009    
																																					URL
 | 
																													
																						| [16] | LI X J, WANG X, ZHAO Q, et al. Carbon fiber enhanced bioelectricity generation in soil microbial fuel cells[J]. Biosensors and bioelectronics, 2016, 85:135-141.  doi: 10.1016/j.bios.2016.05.001    
																																					URL
 | 
																													
																						| [17] | 欧阳湖, 周建, 任建国, 等. 土壤微生物燃料电池电极微生物分析及其运行对水稻生长活性的影响[J]. 安徽农业大学学报, 2021, 48(1):115-120. | 
																													
																						| [18] | ZHAO X D, LI X J, ZHANG X L, et al. Bioelectrochemical removal of tetracycline from four typical soils in China: a performance assessment[J]. Bioelectrochemistry, 2019, 129:26-33.  doi: S1567-5394(18)30594-2    
																																																	pmid: 31100650
 | 
																													
																						| [19] | GANGAVARAPU S, SHEN J P, LIU Y R, et al. Effect of long-term industrial waste effluent pollution on soil enzyme activities and bacterial community composition[J]. Environmental monitoring and assessment, 2016, 188(2):1-13.  doi: 10.1007/s10661-015-4999-z    
																																					URL
 | 
																													
																						| [20] | 张晨, 张丽红, 李亚宁, 等. 典型磺胺类抗生素对土壤脱氢酶和过氧化氢酶活性的影响[J]. 安全与环境学报, 2018, 18(6):2379-2382. | 
																													
																						| [21] | 李亚宁, 盛红坤, 王斌, 等. 磺胺类抗生素对根际微域土壤酶活性的影响[J]. 应用化工, 2021, 50(6):1559-1562,1568. | 
																													
																						| [22] | ZHAO X D, LI X J, LI Y, et al. Metagenomic analysis reveals functional genes in soil microbial electrochemical removal of tetracycline[J]. Journal of hazardous materials, 2021, 408:124880.  doi: 10.1016/j.jhazmat.2020.124880    
																																					URL
 | 
																													
																						| [23] | LI X J, ZHAO Q, WANG X, et al. Surfactants selectively reallocated the bacterial distribution in soil bioelectrochemical remediation of petroleum hydrocarbons[J]. Journal of hazardous materials, 2018, 344:23-32.  doi: S0304-3894(17)30740-9    
																																																	pmid: 29028494
 | 
																													
																						| [24] | 董齐琪, 王海燕, 杜雪, 等. 东北低山区典型林分类型土壤脲酶活性特征[J]. 应用与环境生物学报, 2023, 29(3):690-695. | 
																													
																						| [25] | 聂兆君, 秦世玉, 刘红恩, 等. 氮锌配施对冬小麦产量及土壤氮素转化相关酶活性的影响[J]. 植物营养与肥料学报, 2020, 26(3):431-441. | 
																													
																						| [26] | 陈曦, 江赜伟, 丁洁, 等. 生物炭施用对节水灌溉稻田土壤氮素含量及脲酶活性的影响[J]. 江苏农业科学, 2020, 48(19):268-274. | 
																													
																						| [27] | ZHANG X L, LI X J, ZHAO X D, et al. Bioelectric field accelerates the conversion of carbon and nitrogen in soil bioelectrochemical systems[J]. Journal of hazardous materials, 2020, 388:121790.  doi: 10.1016/j.jhazmat.2019.121790    
																																					URL
 | 
																													
																						| [28] | 翟凯燕, 陈信力, 马婷瑶, 等. 间伐对杉木人工林土壤多酚氧化酶活性的影响[J]. 东北林业大学学报, 2015, 43(7):88-91. | 
																													
																						| [29] | 罗慧, 冯程程, 赵境怡, 等. 石油污染土壤多酚氧化酶的动力学及热力学特征[J]. 环境科学研究, 2020, 33(11):2621-2628. | 
																													
																						| [30] | LENG Y F, BAO J G, CHANG G F, et al. Biotransformation of tetracycline by a novel bacterial strain Stenotrophomonas maltophilia DT1[J]. Journal of hazardous materials, 2016, 318:125-133.  doi: 10.1016/j.jhazmat.2016.06.053    
																																					URL
 |