[1] |
TILMAN D, BALZER C, HILL J, et al. Global food demand and the sustainable intensification of agriculture[J]. Proceedings of the national academy of sciences, 2011, 108:20260.
|
[2] |
YU L Y, ZHAO X N, GAO X D, et al. Improving/maintaining water-use efficiency and yield of wheat by deficit irrigation: A global meta-analysis[J]. Agricultural water management, 2020, 228:105906.
|
[3] |
KHEIR A M S, ALRAJHI A A, GHONEIM A M, et al. Modeling deficit irrigation-based evapotranspiration optimizes wheat yield and water productivity in arid regions[J]. Agricultural water management, 2021, 256:107-122.
|
[4] |
MALEK K, REED P, ADAM J, et al. Water rights shape crop yield and revenue volatility tradeoffs for adaptation in snow dependent systems[J]. Nature communications, 2020, 11:1-10.
|
[5] |
包永芳, 范云飞, 吴昕蕾, 等. 中国主要作物水生产力时空格局演变分析[J]. 中国农业大学学报, 2023, 28(12):1-14.
|
[6] |
YAN N N, WU B F. Integrated spatial-temporal analysis of crop water productivity of winter wheat in Hai Basin[J]. Agricultural water management, 2014, 133:24-33.
|
[7] |
XIAO D P, TAO F L. Contributions of cultivars, management and climate change to winter wheat yield in the North China Plain in the past three decades[J]. European journal of agronomy, 2014, 52:112-122.
|
[8] |
张喜英. 华北典型区域农田耗水与节水灌溉研究[J]. 中国生态农业学报, 2018, 26(10):1454-1464.
|
[9] |
张金鑫, 葛均筑, 马玮, 等. 华北平原冬小麦-夏玉米种植体系周年水分高校利用研究进展[J]. 作物学报, 2023, 49(4):879-892.
doi: 10.3724/SP.J.1006.2023.21034
|
[10] |
ZHANG X Y, QIN W L, CHEN S Y, et al. Responses of yield and WUE of winter wheat to water stress during the past three decades-A case study in the North China Plain[J]. Agricultural water management, 2017, 179:47-54.
|
[11] |
REN P P, HUANG F, LI B G. Spatiotemporal patterns of water consumption and irrigation requirements of wheat-maize in the Huang-Huai-Hai Plain, China and options of their reduction[J]. Agricultural water management, 2022, 263:107468.
|
[12] |
刘楚杰, 李晓云, 江文曲. 粮食主产区粮食生产与农业水资源压力脱钩关系研究[J]. 农业资源与环境学报, 2023, 40(2):479-489.
|
[13] |
SU Z. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes[J]. Hydrology and earth system sciences, 2002, 6:85-99.
|
[14] |
王晗, 景元书, 秦奔奔. 基于能量平衡的遥感蒸散研究进展[J]. 节水灌溉, 2018(11):65-72.
|
[15] |
ZHAO J, CHEN X, ZHANG J, et al. Higher temporal evapotranspiration estimation with improved SEBS model from geostationary meteorological satellite data[J]. Scientific reports, 2019, 9:14981.
doi: 10.1038/s41598-019-50724-w
pmid: 31628363
|
[16] |
ANG B W. Decomposition analysis for policymaking in energy[J]. Energy policy, 2004, 32:1131-1139.
|
[17] |
ZHANG C J, ZHAO Y, SHI C F, et al. Can China achieve its water use peaking in 2030? A scenario analysis based on LMDI and Monte Carlo method[J]. Journal of cleaner production, 2021, 278:123214.
|
[18] |
刘玉, 高秉博, 潘瑜春, 等. 基于LMDI模型的黄淮海地区县域粮食生产影响因素分解[J]. 农业工程学报, 2013, 29(21):1-10.
|
[19] |
REN D D, YANG Y H, HU Y K, et al. Evaluating the potentials of cropping adjustment for groundwater conservation and food production in the piedmont region of the North China Plain[J]. Stochastic environmental research and risk assessment, 2019, 35:1-12.
|
[20] |
常媛媛, 刘俊娜, 张琦, 等. 粮食主产区耕地非粮化空间格局分异及其成因[J]. 农业资源与环境学报, 2022, 39(4):817-826.
|
[21] |
于元赫, 王越, 宫大卫. 山东省粮食生产效率时空演变及影响因素研究[J]. 农业资源与环境学报, 2023, 40(3):728-738.
|
[22] |
张志高, 娄延军, 张玉, 等. 2003—2015年河南省粮食增产格局与贡献因素研究[J]. 中国农业资源与区划, 2018, 39(6):28-34.
|
[23] |
蔡承智, 何柳欢, 熊艺龙, 等. 基于ARIMA模型的中国小麦单产潜力分析[J]. 农业展望, 2021, 17(4):42-46.
|
[24] |
ZHANG S Y, ZHANG X H, QIU X L, et al. Quantifying the spatial variation in the potential productivity and yield gap of winter wheat in China[J]. Journal of integrative agriculture, 2017, 16:845-857.
doi: 10.1016/S2095-3119(16)61467-3
|
[25] |
张胜全, 任立平, 王拯, 等. 从收获指数探讨源库关系调控与小麦增产[J]. 东北农业科学, 2022, 47(3):21-25.
|
[26] |
陈博, 欧阳竹, 程维新, 等. 近50a华北平原冬小麦-夏玉米耗水规律研究[J]. 自然资源学报, 2012, 27(7):1186-1199.
doi: 10.11849/zrzyxb.2012.07.010
|
[27] |
SUN Z G, LI S, ZHU K Y, et al. Does actual cropland water consumption change with evaporation potential in the Lower Yellow River?[J]. Agriculture, ecosystems & environment, 2021, 316:107468.
|
[28] |
ALI S, MA X C, JIA Q M, et al. Supplemental irrigation strategy for improving grain filling, economic return, and production in winter wheat under the ridge and furrow rainwater harvesting system[J]. Agricultural water management, 2019, 226:105842.
|
[29] |
ALI M H, TALUKDER M S U. Increasing water productivity in crop production-A synthesis[J]. Agricultural water management, 2008, 95:1201-1213.
|
[30] |
BALL B C, GRIFFITHS B S, TOPP C F E, et al. Seasonal nitrous oxide emissions from field soils under reduced tillage, compost application or organic farming[J]. Agriculture, ecosystems & environment, 2014, 189:171-180.
|
[31] |
CAI Y H, WU P T, ZHU D L, et al. Subsurface irrigation with ceramic emitters: An effective method to improve apple yield and irrigation water use efficiency in the semiarid Loess Plateau[J]. Agriculture, ecosystems & environment, 2021, 313:107404.
|
[32] |
DAI Z J, HU J S, FAN J, et al. No-tillage with mulching improves maize yield in dryland farming through regulating soil temperature, water and nitrate-N[J]. Agriculture, ecosystems & environment, 2021, 309:107288.
|
[33] |
FANG Q X, MA L, GREEN T R, et al. Water resources and water use efficiency in the North China Plain: Current status and agronomic management options[J]. Agricultural water management, 2010, 97:1102-1116.
|