[1] |
DHANKHER O P, FOYER C H. Climate resilient crops for improving global food security and safety[J]. Plant cell environ, 2018, 41(5):877-884.
|
[2] |
ABD-ELMABOD S K, MUñOZ-ROJAS M, JORDáN A, et al. Climate change impacts on agricultural suitability and yield reduction in a Mediterranean region[J]. Geoderma, 2020, 374:14.
|
[3] |
HAIDER S, RAZA A, IQBAL J, et al. Analyzing the regulatory role of heat shock transcription factors in plant heat stress tolerance: a brief appraisal[J]. Mol biol rep, 2022, 49(6):5771-5785.
|
[4] |
YAN S P, ZHANG Q Y, TANG Z C, et al. Comparative proteomic analysis provides new insights into chilling stress responses in rice[J]. Molecular & cellular proteomics, 2006, 5(3):484-496.
|
[5] |
MIURA K, FURUMOTO T. Cold Signaling and Cold Response in Plants[J]. Int j mol sci, 2013, 14(3):5312-5337.
doi: 10.3390/ijms14035312
pmid: 23466881
|
[6] |
YADAV S K. Cold stress tolerance mechanisms in plants. a review[J]. Agron sustain dev, 2010, 30(3):515-527.
|
[7] |
CHINNUSAMY V, ZHU J, ZHU J K. Cold stress regulation of gene expression in plants[J]. Trends plant sci, 2007, 12(10):444-451.
doi: 10.1016/j.tplants.2007.07.002
pmid: 17855156
|
[8] |
ZHAO C Z, LANG Z B, ZHU J K. Cold responsive gene transcription becomes more complex[J]. Trends plant sci, 2015, 20(8):466-468.
doi: 10.1016/j.tplants.2015.06.001
pmid: 26072094
|
[9] |
JUURAKKO C L, BREDOW M, NAKAYAMA T, et al. The Brachypodium distachyon cold-acclimated plasma membrane proteome is primed for stress resistance[J]. G3-genes genomes genet, 2021, 11(9):15.
|
[10] |
WEI X S, LIU S, SUN C, et al. Convergence and divergence: signal perception and transduction mechanisms of cold stress in arabidopsis and rice[J]. Plants-basel, 2021, 10(9):16.
|
[11] |
GUO Z H, MA W D, CAI L J, et al. Comparison of anther transcriptomes in response to cold stress at the reproductive stage between susceptible and resistant Japonica rice varieties[J]. BMC plant biol, 2022, 22(1):20.
|
[12] |
KAZEMI-SHAHANDASHTI S S, MAALI-AMIRI R. Global insights of protein responses to cold stress in plants: signaling, defence, and degradation[J]. J plant physiol, 2018, 226:123-135.
|
[13] |
CHINNUSAMY V, ZHU J K, SUNKAR R. Gene regulation during cold stress acclimation in plants[J]. Methods in molecular biology (Clifton, NJ), 2010, 639:39-55.
|
[14] |
MORI K, RENHU N, NAITO M, et al. Ca2+-permeable mechanosensitive channels MCA1 and MCA2 mediate cold-induced cytosolic Ca2+ increase and cold tolerance in Arabidopsis[J]. Scientific reports, 2018, 8:10.
|
[15] |
MA Y, DAI X Y, XU Y Y, et al. COLD1 confers chilling tolerance in rice[J]. Cell, 2015, 160(6):1209-1221.
doi: 10.1016/j.cell.2015.01.046
pmid: 25728666
|
[16] |
CUI Y M, LU S, LI Z, et al. Cyclic nucleotide-gated ion CHANNELs 14 and 16 promote tolerance to heat and chilling in rice1[J]. Plant physiol, 2020, 183(4):1794-1808.
doi: 10.1104/pp.20.00591
pmid: 32527735
|
[17] |
WANG J C, REN Y L, LIU X, et al. Transcriptional activation and phosphorylation of OsCNGC9 confer enhanced chilling tolerance in rice[J]. Mol plant, 2021, 14(2):315-329.
doi: 10.1016/j.molp.2020.11.022
pmid: 33278597
|
[18] |
GUO X Y, LIU D F, CHONG K. Cold signaling in plants: insights into mechanisms and regulation[J]. J integr plant biol, 2018, 60(9):745-756.
doi: 10.1111/jipb.12706
|
[19] |
KAWAMURA Y, UEMURA M. Mass spectrometric approach for identifying putative plasma membrane proteins of Arabidopsis leaves associated with cold acclimation[J]. The plant journal, 2003, 36(2):141-154.
|
[20] |
DICKINSON A J, ZHANG J Y, LUCIANO M, et al. A plant lipocalin promotes retinal-mediated oscillatory lateral root initiation[J]. Science, 2021, 373(6562):1532.
doi: 10.1126/science.abf7461
pmid: 34446443
|
[21] |
HERNáNDEZ-GRAS F, BORONAT A. A hydrophobic proline-rich motif is involved in the intracellular targeting of temperature-induced lipocalin[J]. Plant molbiol, 2015, 88(3):301-311.
|
[22] |
HUANG Q X, LIAO X Q, YANG X H, et al. Lysine crotonylation of DgTIL1 at K72 modulates cold tolerance by enhancing DgnsLTP stability in chrysanthemum[J]. Plant biotechnol j, 2021, 19(6):1125-1140.
doi: 10.1111/pbi.13533
pmid: 33368971
|
[23] |
JI L X, ZHANG Z F, LIU S, et al. The OsTIL1 lipocalin protects cell membranes from reactive oxygen species damage and maintains the 18:3-containing glycerolipid biosynthesis under cold stress in rice[J]. Plant j, 2024, 117(1):72-91.
|
[24] |
PALMGREN M G. plant plasma membrane H+-ATPases: powerhouses for nutrient uptake[J]. Annual review of plant physiology and plant molecular biology, 2001, 52:817-845.
pmid: 11337417
|
[25] |
MUZI S A, PATRIZI A. Cold stress affects H+-ATPase and phospholipase D activity in Arabidopsis[J]. Plant physiology and biochemistry, 2016, 108:328-336.
|
[26] |
SANTNER A, CALDERON-VILLALOBOS L I A, ESTELLE M. Plant hormones are versatile chemical regulators of plant growth[J]. Nat chem biol, 2009, 5(5):301-307.
doi: 10.1038/nchembio.165
pmid: 19377456
|
[27] |
EREMINA M, ROZHON W, POPPENBERGER B. Hormonal control of cold stress responses in plants[J]. Cell mol life sci, 2016, 73(4):797-810.
doi: 10.1007/s00018-015-2089-6
pmid: 26598281
|
[28] |
SAKATA T, ODA S, TSUNAGA Y, et al. Reduction of gibberellin by low temperature disrupts pollen development in rice1 W OPEN[J]. Plant physiol, 2014, 164(4):2011-2019.
doi: 10.1104/pp.113.234401
pmid: 24569847
|
[29] |
AYA K, UEGUCHI-TANAKA M, KONDO M, et al. Gibberellin modulates anther development in rice via the transcriptional regulation of GAMYB[J]. Plant cell, 2009, 21(5):1453-1472.
doi: 10.1105/tpc.108.062935
pmid: 19454733
|
[30] |
XIANG Y, TANG N, DU H, et al. Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice[J]. Plant physiol, 2008, 148(4):1938-1952.
doi: 10.1104/pp.108.128199
pmid: 18931143
|
[31] |
OLIVER S N, DENNIS E S, DOLFERUS R. ABA regulates apoplastic sugar transport and is a potential signal for cold-induced pollen sterility in rice[J]. Plant cell physiol, 2007, 48(9):1319-1330.
pmid: 17693452
|
[32] |
刘次桃, 王威, 毛毕刚, 等. 水稻耐低温逆境研究:分子生理机制及育种展望[J]. 遗传, 2018, 40(3):171-185.
|
[33] |
OLIVER S N, DONGEN J T V, ALFRED S C, et al. Cold-induced repression of the rice anther-specific cell wall invertase gene OSINV4 is correlated with sucrose accumulation and pollen sterility[J]. Plant cell & environment, 2010, 28(12):1534-1551.
|
[34] |
SAKATA T, ODA S, TSUNAGA Y, et al. Reduction of gibberellin by low temperature disrupts pollen development in rice[J]. Plant physiol, 2014, 164(4):2011-2019.
doi: 10.1104/pp.113.234401
pmid: 24569847
|
[35] |
WILLEMS P, MHAMDI A, STAEL S, et al. The ROS wheel: refining ROS transcriptional footprints[J]. Plant physiol, 2016, 171(3):1720-1733.
doi: 10.1104/pp.16.00420
pmid: 27246095
|
[36] |
MITTLER R. ROS are good[J]. Trends plant sci, 2017, 22(1):11-19.
doi: S1360-1385(16)30112-1
pmid: 27666517
|
[37] |
LIANG X, ZHANG L, NATARAJAN S K, et al. Proline mechanisms of stress survival[J]. Antioxidants & redox signaling, 2013, 19(9):998-1011.
|
[38] |
UZAL O. Effects of proline treatments on plant growth, lipid peroxidation and antioxidant enzyme activities of tomato (Solanum lycopersicum L.) seedlings under chilling stress[J]. Gesunde pflanz, 2022, 74(3):729-736.
|
[39] |
WANG P J, CHEN X J, GUO Y C, et al. Identification of CBF transcription factors in tea plants and a survey of potential CBF target genes under low temperature[J]. Int j mol sci, 2019, 20(20):16.
|
[40] |
ZHOU Y P, SOMMER M L, HOCHHOLDINGER F. Cold response and tolerance in cereal roots[J]. J exp bot, 2021, 72(21):7474-7481.
|
[41] |
MENG X X, LIANG Z K, DAI X R, et al. Predicting transcriptional responses to cold stress across plant species[J]. Proc natl acad sci USA, 2021, 118(10):9.
|
[42] |
MEHROTRA S, VERMA S, KUMAR S, et al. Transcriptional regulation and signalling of cold stress response in plants: an overview of current understanding[J]. Environ exp bot, 2020, 180:13.
|
[43] |
THOMASHOW M F. Plant cold acclimation: freezing tolerance genes and regulatory mechanisms[J]. Annual review of plant physiology and plant molecular biology, 1999, 50:571-599.
pmid: 15012220
|
[44] |
GUO J, REN Y K, TANG Z H, et al. Characterization and expression profiling of the ICE-CBF-COR genes in wheat[J]. PeerJ, 2019, 7:19.
|
[45] |
HWARARI D, GUAN Y L, AHMAD B, et al. ICE-CBF-COR signaling cascade and its regulation in plants responding to cold stress[J]. Int j mol sci, 2022, 23(3):20.
|
[46] |
CHEN Y, CHEN Z L, KANG J Q, et al. AtMYB14 regulates cold tolerance in Arabidopsis[J]. Plant mol biol rep, 2013, 31(1):87-97.
|
[47] |
WU L H, ZHOU M Q, SHEN C, et al. Transgenic tobacco plants over expressing cold regulated protein CbCOR15b from Capsella bursa-pastoris exhibit enhanced cold tolerance[J]. J Plant physiol, 2012, 169(14):1408-1416.
|
[48] |
ZHEN Y, UNGERER M C. Relaxed Selection on the CBF/DREB1 regulatory genes and reduced freezing tolerance in the southern range of Arabidopsis thaliana[J]. Mol biol evol, 2008, 25(12):2547-2555.
|
[49] |
CHINNUSAMY V, OHTA M, KANRAR S, et al. ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis[J]. Genes & development, 2003, 17(8):1043-1054.
|
[50] |
SUN X, WANG Y, SUI N. Transcriptional regulation of bHLH during plant response to stress[J]. Biochem biophys res commun, 2018, 503(2):397-401.
|
[51] |
TANG K, ZHAO L, REN Y Y, et al. The transcription factor ICE1 functions in cold stress response by binding to the promoters of CBF and COR genes[J]. J integr plant biol, 2020, 62(3):258-263.
|
[52] |
KURBIDAEVA A, EZHOVA T, NOVOKRESHCHENOVA M. Arabidopsis thaliana ICE2 gene: phylogeny, structural evolution and functional diversification from ICE1[J]. Plant sci, 2014, 229:10-22.
|
[53] |
KASHYAP P, DESWAL R. Two ICE isoforms showing differential transcriptional regulation by cold and hormones participate in Brassica juncea cold stress signaling[J]. Gene, 2019, 695:32-41.
|
[54] |
XIE Y P, CHEN P X, YAN Y, et al. An atypical R2R3 MYB transcription factor increases cold hardiness by CBF-dependent and CBF-independent pathways in apple[J]. New phytol, 2018, 218(1):201-218.
doi: 10.1111/nph.14952
pmid: 29266327
|
[55] |
ZHANG Z H, ZHU L, SONG A P, et al. Chrysanthemum (Chrysanthemum morifolium) CmICE2 conferred freezing tolerance in Arabidopsis[J]. Plant physiology and biochemistry, 2020, 146:31-41.
|
[56] |
MIZOI J, SHINOZAKI K, YAMAGUCHI-SHINOZAKI K. AP2/ERF family transcription factors in plant abiotic stress responses[J]. Biochim biophys acta-gene regul mech, 2012, 1819(2):86-96.
|
[57] |
MEDINA J, CATALá R, SALINAS J. The CBFs: three arabidopsis transcription factors to cold acclimate[J]. Plant sci, 2011, 180(1):3-11.
doi: 10.1016/j.plantsci.2010.06.019
pmid: 21421341
|
[58] |
HU Z, BAN Q Y, HAO J, et al. Genome-wide characterization of the c-repeat binding factor (CBF) gene family involved in the response to abiotic stresses in tea plant (Camellia sinensis)[J]. Front plant sci, 2020, 11:13.
|
[59] |
GUAN Y L, LIU S Q, WU W H, et al. Genome-wide identification and cold stress-induced expression analysis of the CBF gene family in Liriodendron chinense[J]. J for res, 2021, 32(6):2531-2543.
|
[60] |
AN D, MA Q X, YAN W, et al. Divergent regulation of CBF regulon on cold tolerance and plant phenotype in cassava overexpressing Arabidopsis CBF3 gene[J]. Front plant sci, 2016, 7: 13.
|
[61] |
NOVILLO F, MEDINA J, SALINAS J. Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon[J]. Proc natl acad sci USA, 2007, 104(52):21002-21007.
|
[62] |
ZHENG P, CAO L, ZHANG C, et al. The transcription factor MYB43 antagonizes with ICE1 to regulate freezing tolerance in Arabidopsis[J]. The new phytologist, 2023, 238(6):2440-2459.
|
[63] |
GUAN Q, WU J, ZHANG Y, et al. A DEAD box RNA helicase is critical for pre-mRNA splicing, cold-responsive gene regulation, and cold tolerance in Arabidopsis[J]. Plant cell, 2013, 25(1):342-356.
|
[64] |
UEMURA M, GILMOUR S J, THOMASHOW M F, et al. Effects of COR6.6 and COR15am polypeptides encoded by COR (cold-regulated) genes of Arabidopsis thaliana on the freeze-induced fusion and leakage of liposomes[J]. Plant physiol, 1996, 111(1):313-327.
|
[65] |
ZHANG H Y, MAO X G, JING R L, et al. Characterization of a common wheat (Triticum aestivum L.) TaSnRK2.7 gene involved in abiotic stress responses[J]. J exp bot, 2011, 62(3):975-988.
|
[66] |
SUN X C, HU C X, TAN Q L, et al. Effects of molybdenum on expression of cold-responsive genes in abscisic acid (ABA)-dependent and ABA-independent pathways in winter wheat under low-temperature stress[J]. Ann bot, 2009, 104(2):345-356.
|
[67] |
FARAJALLA M R, GULICK P J. The α-tubulin gene family in wheat (Triticum aestivum L.) and differential gene expression during cold acclimation[J]. Genome, 2007, 50(5):502-510.
|
[68] |
THOMASHOW M F. Role of cold-responsive genes in plant freezing tolerance1[J]. Plant physiol, 1998, 118(1):1-8.
doi: 10.1104/pp.118.1.1
pmid: 9733520
|
[69] |
BRETON G, DANYLUK J, CHARRON J B T F, et al. Expression profiling and bioinformatic analyses of a novel stress-regulated multispanning transmembrane protein family from cereals and Arabidopsis[J]. Plant physiol, 2003, 132(1):64-74.
|
[70] |
THALHAMMER A, HUNDERTMARK M, POPOVA A V, et al. Interaction of two intrinsically disordered plant stress proteins (COR15A and COR15B) with lipid membranes in the dry state[J]. Biochim biophys acta-biomembr, 2010, 1798(9):1812-1820.
|
[71] |
THALHAMMER A, HINCHA D K. A mechanistic model of COR15 protein function in plant freezing tolerance: integration of structural and functional characteristics[J]. Plant signaling & behavior, 2014, 9(12):e977722.
|
[72] |
ZHOU A M, SUN H W, FENG S, et al. A novel cold-regulated gene from Phlox subulata, PsCor413im1, enhances low temperature tolerance in Arabidopsis[J]. Biochem biophys res commun, 2018, 495(2):1688-1694.
|
[73] |
BOSCO C D, BUSCONI M, GOVONI C, et al. cor gene expression in barley mutants affected in chloroplast development and photosynthetic electron transport[J]. Plant physiol, 2003, 131(2):793-802.
pmid: 12586903
|
[74] |
ENSMINGER I, BUSCH F, HUNER N P A. Photostasis and cold acclimation: sensing low temperature through photosynthesis[J]. Physiologia plantarum, 2010, 126(1):28-44.
|
[75] |
LI X, LIU C, ZHAO Z, et al. COR27 and COR28 are novel regulators of the COP1-HY5 regulatory hub and photomorphogenesis in Arabidopsis[J]. The plant cell, 2020, 32(10):3139-3154.
|