欢迎访问《中国农学通报》,

中国农学通报 ›› 2026, Vol. 42 ›› Issue (3): 37-47.doi: 10.11924/j.issn.1000-6850.casb2025-0419

• 农学·农业基础科学 • 上一篇    下一篇

烟草氮营养生理、分子与遗传改良研究进展

盘冬瓒1,2(), 廖钰3, 邵秀红1, 李集勤1, 马柱文1, 邹明民1, 高三基2, 潘晓英1, 黄振瑞1()   

  1. 1 广东省农业科学院作物研究所广东省农作物遗传改良重点实验室,广东省烟草育种与综合利用工程技术研究中心, 广州 510640
    2 福建农林大学农学院, 福州 350002
    3 广东中烟工业有限责任公司原料供应中心, 广州 510640
  • 收稿日期:2025-05-30 修回日期:2025-10-11 出版日期:2026-02-15 发布日期:2026-02-09
  • 通讯作者:
    黄振瑞,男,1980年出生,福建漳州人,研究员,博士,研究方向:作物养分管理。通信地址:510640 广东省广州市天河区五山街道金颖西二街18号 广东省农业科学院作物研究所,E-mail:
  • 作者简介:

    盘冬瓒,男,2001年出生,广西来宾人,在读硕士生,研究方向:烟草学。通信地址:510640 广东省广州市天河区五山街道金颖西二街18号 广东省农业科学院作物研究所,E-mail:

  • 基金资助:
    国家自然科学基金项目“MYB1R1与下游SAUR36-like调控烟草腋芽发育应答磷营养差异的分子机制研究”(32000214); 广东省自然科学基金项目“转录因子MYB1R1调控烟草腋芽长度应答磷营养差异的分子解析”(2020A1515011391); 广东省农业科学院人才培养项目“NtMYB调控烟株耐受低温胁迫的分子机制研究”(R2022PY-QY003); 广东省农业科学院作物研究所所长基金/广东省农作物遗传改良重点实验室开放研究基金项目“NtMYB78/108调控烟株低温应答的分子机理研究”(202303); 广东中烟工业有限责任公司科技项目(2025440000340007)

Research Progress on Physiological, Molecular, and Genetic Improvement of Nitrogen Nutrition in Tobacco

PAN Dongzan1,2(), LIAO Yu3, SHAO Xiuhong1, LI Jiqin1, MA Zhuwen1, ZOU Mingmin1, GAO Sanji2, PAN Xiaoying1, HUANG Zhenrui1()   

  1. 1 Crop Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Crop Genetic Improvement/Guangdong Engineering Research Center for Tobacco Breeding and Comprehensive Utilization, Guangzhou 510640
    2 College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002
    3 China Tobacco Guangdong Industrial Co., Ltd., Raw Materials Supply Center, Guangzhou 510640
  • Received:2025-05-30 Revised:2025-10-11 Published:2026-02-15 Online:2026-02-09

摘要:

针对烟草生产中氮肥过量施用导致品质下降与环境污染,且氮素利用机制、精准施氮标准及育种靶点不明确的问题,为完善烟草氮营养调控理论与氮高效改良技术,本文综述烟草对硝态氮、铵态氮的吸收、分配与利用机制,总结烟草氮转运蛋白(NRT、AMT家族)的功能及表达特征,分析烟草氮素传感及信号传导的关键因子(硝酸盐受体、转录因子等)与调控路径,梳理氮高效提升的主要途径与遗传改良进展。结果显示:(1)烟草通过高/低亲和力转运系统吸收硝态氮、铵态氮,其同化依赖硝酸还原酶(NR)、亚硝酸还原酶(NiR)、谷氨酰胺合成酶(GS)等关键酶;(2)NRT家族主导硝态氮转运,AMT家族调控铵态氮吸收,转录因子NtWRKY65等参与氮信号传导;(3)不同烟区适宜施氮量差异显著(南方100~150 kg/hm2、北方82.5~90 kg/hm2),NO3-/NH4+比例1:1适配多数品种;(4)已筛选出K326、G80等双高效型品种,明确叶面积、酶活性等氮效率相关指标。综上,烟草氮营养调控涉及吸收、转运、信号传导多环节协同,合理施肥与品种改良是提升氮效率的核心路径。未来需开展多区域试验明确精准施氮参数,挖掘氮代谢关键分子靶点,结合分子技术与传统育种培育氮高效品种,为烟草绿色生产提供支撑。

关键词: 烟草, 氮素营养, 氮转运蛋白, 氮信号传导, 氮高效品种

Abstract:

In response to the issues of excessive nitrogen fertilizer application in tobacco production leading to quality deterioration and environmental pollution, as well as the unclear mechanisms of nitrogen utilization, lack of precise nitrogen application standards, and undefined breeding targets, this paper reviewed the absorption, distribution, and utilization mechanisms of nitrate and ammonium nitrogen in tobacco to improve the theoretical framework of nitrogen nutrition regulation and nitrogen-efficient improvement technologies. The functions and expression characteristics of nitrogen transporters (NRT and AMT families) in tobacco were summarized, key factors involved in nitrogen sensing and signal transduction (such as nitrate receptors and transcription factors) and regulatory pathways were analyzed, and the main approaches and genetic improvement progress for enhancing nitrogen efficiency were outlined. The results indicated that: (1) Tobacco absorbed nitrate and ammonium nitrogen through high-/low-affinity transport systems, with assimilation relying on key enzymes such as nitrate reductase (NR), nitrite reductase (NiR), and glutamine synthetase (GS). (2) The NRT family primarily mediated nitrate nitrogen transport, while the AMT family regulates ammonium nitrogen absorption. Transcription factors such as NtWRKY65 participated in nitrogen signal transduction. (3) The optimal nitrogen application rates varied significantly across different tobacco-growing regions (100-150 kg/hm2 in southern China and 82.5-90 kg/hm2 in northern China), with a NO3-/NH4+ ratio of 1:1 being suitable for most varieties. (4) Dual high-efficiency varieties such as K326 and G80 had been identified, and nitrogen efficiency-related indicators such as leaf area and enzyme activity had been clarified. In summary, tobacco nitrogen nutrition regulation involved the coordinated actions of multiple processes, including absorption, transport, and signal transduction, with rational fertilization and varietal improvement being the core pathways for enhancing nitrogen efficiency. Future efforts should focus on conducting multi-regional trials to define precise nitrogen application parameters, identifying key molecular targets in nitrogen metabolism, and integrating molecular techniques with traditional breeding to develop nitrogen-efficient varieties, thereby providing support for green tobacco production.

Key words: tobacco, nitrogen nutrition, nitrogen transport proteins, nitrogen signal transduction, nitrogen-efficient varieties