[1] |
王晓娜 . 除草剂对荞麦田杂草防效及荞麦生长发育的影响[D]. 杨凌:西北农林科技大学, 2019.
|
[2] |
张静 . 我国除草剂的登记现状及其发展趋势分析[D]. 保定:河北农业大学, 2013.
|
[3] |
郭建国 . 苯唑草酮在玉米田的应用探究[J]. 农药市场信息, 2019(19):62.
|
[4] |
水清 . 玉米田新型除草剂苯唑草酮[J]. 农药市场信息, 2011(13):40.
|
[5] |
Liu X, Dong F, Xu J , et al. Miniaturized liquid-liquid extraction coupled with ultra-performance liquid chromatography/tandem mass spectrometry for determination of topramezone in soil, corn, wheat, and water[J]. Analytical and Bioanalytical Chemistry, 2011,400(9):3097-3107.
doi: 10.1007/s00216-011-4967-6
URL
pmid: 21509485
|
[6] |
潘静, 高敬雨, 刘润峰 , 等. 24%苯唑草酮·烟嘧磺隆·莠去津可分散油悬浮剂高效液相色谱分析[J]. 现代农药, 2018,17(03):33-35.
|
[7] |
董新凤 . 色谱与质谱联用技术用于除草剂多残留检测及莠去津降解规律的研究[D]. 保定:河北大学, 2015.
|
[8] |
Nath C P, Dubey R P, Hazra K K , et al. Evaluation of new generation post-emergence herbicides in Chickpea (Cicer arietinum L.)[J]. National Academy Science Letters, 2018,41(1):1-5.
doi: 10.1007/s40009-017-0604-z
URL
|
[9] |
冯义志, 金杰, 潘金菊 , 等. 苯唑草酮在玉米和土壤中的残留消解动态及残留量[J]. 农药, 2017,56(09):664-667.
|
[10] |
Ehrhardt T, Grossmann K . On the mechanism of action and selectivity of the corn herbicide topramezone: a new inhibitor of 4-hydroxyphenylpyruvate dioxygenase[J]. Pest Management Science, 2007,63(5):429-439.
doi: 10.1002/ps.1341
URL
pmid: 17340675
|
[11] |
郑庆伟 . 噻吩磺隆混加苯唑草酮或灭草松对胡麻田阔叶杂草防效好且安全[J]. 农药市场信息, 2019(20):54.
|
[12] |
陈正州 . 苯唑草酮对玉米田杂草的防除效果[J]. 安徽农业科学, 2018,46(19):153-155,158.
|
[13] |
车晋滇, 贾峰勇, 王帅宇 , 等. 30%苯唑草酮防除夏玉米田杂草药效试验[J]. 北京农业, 2015(09):130-132.
|
[14] |
Justin C, Solomon M, Caroline C , et al. Evaluation of a pre-formulated post-emergence herbicide mixture of topramezone and dicamba on annual weeds and Bermuda grass in maize in a sub-tropical agro-ecology[J]. Heliyon, 2019,5(5):e01712.
doi: 10.1016/j.heliyon.2019.e01712
URL
pmid: 31193336
|
[15] |
熊战之, 袁树忠, 钱兰娟 , 等. 硝磺草酮、苯唑草酮对夏玉米田杂草的防除效果[J]. 江苏农业科学, 2013,41(12):134-136.
|
[16] |
尹振东 . 苯唑草酮衍生物的合成和研究[D]. 贵阳:贵州大学, 2016.
|
[17] |
赵芳芳 . 除草剂苯唑草酮对小球藻的毒性机制研究[D]. 杭州:浙江工业大学, 2017.
|
[18] |
刘君良, 刘伟堂, 李小芳 , 等. 苯唑草酮等3种除草剂对不同玉米品种的安全性[J]. 农药, 2011,50(06):426-427,435.
|
[19] |
庄占兴, 范金勇, 胡尊纪 , 等. 苯唑草酮对玉米田一年生杂草活性及其安全性测定[J]. 山东化工, 2017,46(12):127-129,132.
|
[20] |
Gitsopoulos T K, Melidis V, Evgenidis G . Response of maize (Zea mays L.) to post-emergence applications of topramezone[J]. Crop Protection, 2010,29(10):1091-1093.
doi: 10.1016/j.cropro.2010.06.020
URL
|
[21] |
刘小民, 王贵启, 许贤 , 等. 助剂对苯唑草酮增效作用研究[J]. 东北农业大学学报, 2014,45(05):64-68.
|
[22] |
Zhang J W, Jaeck O, Menegat A , et al. The mechanism of methylated seed oil on enhancing biological efficacy of topramezone on weeds[J]. Plos One, 2013,8(9):e74280.
doi: 10.1371/journal.pone.0074280
URL
pmid: 24086329
|
[23] |
冯义志, 金杰, 潘金菊 , 等. 苯唑草酮在玉米和土壤中的残留消解动态及残留量[J]. 农药, 2017,56(09):664-667.
|
[24] |
邬美男 . 苯唑草酮的光解、水解与吸附特性研究[D]. 长春:吉林农业大学, 2014.
|
[25] |
刘志培, 刘双江 . 我国污染土壤生物修复技术的发展及现状[J]. 生物工程学报, 2015,31(06):901-916.
|
[26] |
张笑宇 . 烟田土壤微生物特征及其影响因素分析[D]. 郑州:郑州大学, 2018.
|
[27] |
安霞 . 生防细菌的农药降解特性及其降解机制的研究[D]. 济南:山东师范大学, 2010.
|
[28] |
李娟, Constantine Uwaremwe, 冷艳 ,等.节杆菌属细菌处理有机物和重金属污染物的研究进展[J]. 环境科学与技术, 2017,40(10):89-97.
|
[29] |
Li Q H, Song W F, Sun M G , et al. Composition change and adsorption performance of EPS from Bacillus vallismortis sp. induced by Na2S[J]. Ecotoxicology and Environmental Safety, 2019,185:109679.
doi: 10.1016/j.ecoenv.2019.109679
URL
pmid: 31550564
|
[30] |
王宝强, 季秀玲, 魏云林 , 等. 一株黄杆菌低温噬菌体的生物学特征研究[J]. 中国微生态学杂志, 2016,28(10):1117-1122.
|
[31] |
Nath C P, Dubey R P, Hazra K K , et al. Evaluation of new generation post-emergence herbicides in Chickpea (Cicer arietinum L.)[J]. National Academy Science Letters, 2018,41(1):1-5.
doi: 10.1007/s40009-017-0604-z
URL
|
[32] |
杨毅 . 产黄青霉半纤维素酶促进木质纤维素降解的机制研究[D]. 北京:中国农业大学, 2019.
|
[33] |
Yang Y, Yang J S, Wang R N , et al. Cooperation of hydrolysis modes among xylanases reveals the mechanism of hemicellulose hydrolysis by Penicillium chrysogenum P33[J]. Microbial Cell Factories, 2019,18(1):159.
doi: 10.1186/s12934-019-1212-z
URL
pmid: 31542050
|
[34] |
Hou Y H, Wang T H, Long H . Cloning, Sequencing and expression analysis of the first cellulase gene encoding cellobiohydrolase 1 from a cold-adaptive Penicillium chrysogenum FS010[J].Acta Biochimica et Biophysica Sinica, 2007(02):101-107.
doi: 10.1111/j.1745-7270.2007.00260.x
URL
pmid: 17277884
|
[35] |
Ullah S F, Souza A A, Hamann P R V , et al. Structural and functional characterisation of xylanase purified from Penicillium chrysogenum produced in response to raw agricultural waste[J]. International Journal of Biological Macromolecules, 2019,127:385-395.
doi: 10.1016/j.ijbiomac.2019.01.057
URL
pmid: 30654038
|
[36] |
Ayesha S, Jasneet G, Isha J , et al. Stability and structure of Penicillium chrysogenum lipase in the presence of organic solvents[J]. Preparative Biochemistry & Biotechnology, 2018,48(10):977-983.
doi: 10.1080/10826068.2018.1525566
URL
pmid: 30461349
|
[37] |
Yang J, Xu X X, Liu G . Amplification of an MFS transporter rncoding hene penT dignificantly dtimulates penicillin production and enhances the sensitivity of Penicillium chrysogenum to phenylacetic acid[J]. Journal of Genetics and Genomics, 2012,39(11):593-602.
doi: 10.1016/j.jgg.2012.08.004
URL
|
[38] |
Zhao D L, Yuan X L, Du Y M , et al. Benzophenone derivatives from an algal-endophytic isolate of Penicillium chrysogenum and their cytotoxicity[J]. Molecules (Basel, Switzerland), 2018,23(12):e3378.
doi: 10.3390/molecules23123378
URL
pmid: 30572672
|
[39] |
邓新辉, 柴立元, 杨志辉 , 等. Preliminary bioleaching of heavy metals from contaminated soil employing indigenous Penicillium Chrysogenum strain F1[J]. Journal of Central South University, 2012,19(07):1973-1979.
doi: 10.1007/s11771-012-1234-8
URL
|
[40] |
邓新辉, 彭扶风 . 产黄青霉浸出修复重金属污染土壤[J]. 环境工程学报, 2016,10(11):6789-6794.
|
[41] |
Zang S Y, Li P J, Yu X C , et al. Degradation of metabolites of benzo[a]pyrene by coupling Penicillium chrysogenum with KMnO4[J]. Journal of Environmental Sciences (China), 2007,19(2):238-243.
doi: 10.1016/s1001-0742(07)60039-4
URL
pmid: 17915736
|