中国农学通报 ›› 2020, Vol. 36 ›› Issue (30): 82-90.doi: 10.11924/j.issn.1000-6850.casb20191100806
所属专题: 生物技术
收稿日期:
2019-11-07
修回日期:
2019-11-29
出版日期:
2020-10-25
发布日期:
2020-10-16
通讯作者:
祖艳群
作者简介:
刘梅,女,1995年出生,云南昆明人,在读硕士研究生,主要从事土壤重金属污染生态与环境方面的研究。通信地址:650201 云南省昆明市盘龙区云南农业大学资源与环境学院,Tel:86-18788450649,E-mail: 基金资助:
Liu Mei1(), Li Zuran2, Zu Yanqun1(
)
Received:
2019-11-07
Revised:
2019-11-29
Online:
2020-10-25
Published:
2020-10-16
Contact:
Zu Yanqun
摘要:
为探究植物对镉耐性的分子机理研究,提供植物蛋白转运重金属理论基础。本文分别归纳了CAXS和HMAs的结构和功能及其对植物生长的影响,以及协同作用下解毒重金属的机制。CAXs在提高植物修复潜力和强化植物营养有重要作用,主要参与二价阳离子向膜内的转运,决定植物体内Ca2+的浓度,在重金属胁迫下参与重金属离子的转运和解毒。其运行与质膜、液泡膜HMAs产生的电化学H+梯度相关,通过在细胞质膜两侧建立电势梯度差,为CAXs转运物质提供了必不可少的能量支持。但CAXs和HMAs的协同作用机理有待加强研究,建议进行CAXs、HMAs蛋白活性测定、基因分离的鉴定,研究CAXs、HMAs蛋白之间的相互关系,为将来基因工程修复重金属污染的土壤提供可能性。
中图分类号:
刘梅, 李祖然, 祖艳群. 植物吸收、转移镉相关的转运蛋白CAXs和HMAs的研究进展[J]. 中国农学通报, 2020, 36(30): 82-90.
Liu Mei, Li Zuran, Zu Yanqun. Transport Protein CAXs and HMAs Related to Cadmium Absorbing and Transferring of Plant: A Review[J]. Chinese Agricultural Science Bulletin, 2020, 36(30): 82-90.
[1] | 李元, 祖艳群. 重金属污染生态与生态修复[M]. 北京: 科学出版社, 2016. |
[2] | 仇硕, 张敏, 孙延东, 等. 植物重金属镉(Cd2+)吸收、运输、积累及耐性机理研究进展[J]. 西北植物报, 2006,26(12):2615-2621. |
[3] | Fan J L, Wei X Z, Wan L C, et al. Disarrangement of actin filaments and Ca2+ gradient by CdCl2 alters cell wall construction in Arabidopsis thaliana root hairs by inhibiting vesicular trafficking[J]. Journal of Plant Physiology, 2011,168(11):1160-1167. |
[4] |
Rauser W E. Structure and function of metal chelators produced by plants[J]. Cell Biochemistry and Biophysics, 1999,31(1):19-48.
doi: 10.1007/BF02738153 URL pmid: 10505666 |
[5] |
Verbruggen N, Hermans C, Schat H. Molecular mechanisms of metal hyperaccumulation in plants[J]. New Phytologist, 2009,181(4).
doi: 10.1111/j.1469-8137.2008.02723.x URL pmid: 19140932 |
[6] |
杨肖娥, 龙新宪, 倪吾钟. 超积累植物吸收重金属的生理及分子机制[J]. 植物营养与肥料学报, 2002(1):8-15.
doi: 10.11674/zwyf.2002.0102 URL |
[7] |
王晓娟, 王文斌, 杨龙, 等. 重金属镉(Cd)在植物体内的转运途径及其调控机制[J]. 生态学报, 2015,35(23):7921-7929.
doi: 10.5846/stxb201404170754 URL |
[8] | 曹玉巧, 聂庆凯, 高云, 等. 植物中镉及其螯合物相关转运蛋白研究进展[J]. 作物杂志, 2018(3):15-24. |
[9] | 单喆, 张欣欣, 柳参奎. 植物Cation/H+反向转运蛋白研究进展[J]. 基因组学与应用生物学, 2012,31(3):303-309. |
[10] | 张玉秀, 彭晓静, 柴团耀, 等. 植物液泡膜阳离子/H+反向转运蛋白结构和功能研究进展[J]. 生物工程学报, 2011,27(4):546-560. |
[11] |
Shigaki T, Hirschi K D. Diverse Functions and Molecular Properties Emerging for CAX Cation/H+ Exchangers in Plants[J]. Plant Biol, 2006,8(4):419-429.
doi: 10.1055/s-2006-923950 URL pmid: 16906482 |
[12] |
Cheng N H, Pittman J K, Shigaki T, et al. Functional association of Arabidopsis CAX1 and CAX3 is required for normal growth and ion homeostasis[J]. Plant Physiology, 2005,138(4):2048-2060.
doi: 10.1104/pp.105.061218 URL pmid: 16055687 |
[13] |
Satoh-Nagasawa N, Mori M, Nakazawa N, et al. Mutations in Rice (Oryza sativa) Heavy Metal ATPase2 (OsHMA2) Restrict the Translocation of Zinc and Cadmium[J]. Plant cell physiology, 2012,53(1):213-224.
doi: 10.1093/pcp/pcr166 URL pmid: 22123790 |
[14] | 祁碧菽. 水稻Ca2+/H+反向转运体OsCAX3的功能、表达特性及调控序列研究[D]. 北京:中国农业大学, 2005. |
[15] |
Pittman J K, Edmond C, Sunderland P A, et al. A Cation regulated and Proton Gradient-dependent Cation Transporter from Chlamydomonas reinhardtii Has a Role in Calcium and Sodium Homeostasis[J]. Journal of Biological Chemistry, 2009,284(1):525-533.
URL pmid: 19001368 |
[16] |
Pittman J K, Shigaki T, Marshall J L, et al. Functional and regulatory analysis of the Arabidopsis thaliana CAX2 cation transporter[J]. Plant Molecular Biology, 2004,56(6):959-971.
doi: 10.1007/s11103-004-6446-3 URL pmid: 15821993 |
[17] |
Cheng N H, Pittman J K, Shigaki T, et al. Characterization of CAX4, an Arabidopsis H+/Cation Antiporter[J]. Plant physiology, 2002,128(4):1245-1254.
URL pmid: 11950973 |
[18] |
Koren’kov V, Park S, Cheng N H, et al. Enhanced Cd2+-selective root tonoplast transport in tobaccos expressing Arabidopsis cation exchangers[J]. Planta, 2007,225(2):403-411.
URL pmid: 16845524 |
[19] |
Shigaki T, Mei H, Marshall J, et al. The expression of the open reading frame of Arabidopsis CAX1, but not its cDNA, confers metal tolerance in yeast[J]. Plant Biology, 2010,12(6):935-939.
doi: 10.1111/j.1438-8677.2010.00368.x URL pmid: 21061745 |
[20] |
Pittman J. K. Distinct N-Terminal Regulatory Domains of Ca2+/H+ Antiporters[J]. Plant Physiology, 2002,130(2):1054-1062.
doi: 10.1104/pp.008193 URL pmid: 12376668 |
[21] | Cheng N H, Liu J Z, Nelson R S, et al. Characterization of CXIP4, a novel Arabidopsis protein that activates the H+/Ca2+ antiporter, CAX1[J]. Febs Letters, 2004,559(1-3):0-106. |
[22] |
Shigaki T, Cheng N, Pittman J K, et al. Structural Determinants of Ca2+ transport in the Arabidopsis H+/Ca2+Antiporter CAX1[J]. Journal of Biological Chemistry, 2001,276(46):43152-43159.
URL pmid: 11562366 |
[23] |
Shigaki T, Pittman J K, Hirschi K D. Manganese specificity determinants in the Arabidopsis metal/H+ an-tiporter CAX2[J]. Journal of Biological Chemistry, 2003,278(8):6610-6617.
doi: 10.1074/jbc.M209952200 URL pmid: 12496310 |
[24] |
Shigaki T, Barkla B J, Mirandavergara M C, et al. Identification of a Crucial Histidine Involved in Metal Transport Activity in the Arabidopsis Cation/H+ Exchanger CAX1[J]. Journal of Biological Chemistry, 2005,280(34):30136-30142.
doi: 10.1074/jbc.M503610200 URL |
[25] |
Pittman J K, Shigaki T, Hirschi K D. Evidence of differential pH regulation of the Arabidopsis vacuolar Ca2+/H+ antiporters CAX1 and CAX2[J]. Febs Letters, 2005,579(12):2648-2656.
doi: 10.1016/j.febslet.2005.03.085 URL pmid: 15862304 |
[26] |
Manohar M, Shigaki T, Hirschi K D. Plant Cation/H+, exchangers(CAXs): biological functions and genetic manipulations[J]. Plant Biology, 2011,13(4):561-569.
doi: 10.1111/j.1438-8677.2011.00466.x URL |
[27] |
Waight A B, Pedersen B P, Schlessinger A, et al. Structural basis for alternating access of a eukaryotic calcium/proton exchanger[J]. Nature, 2013,499(7456):107-110.
doi: 10.1038/nature12233 URL pmid: 23685453 |
[28] |
Wu M, Tong S, Waltersperger S, et al. Crystal structure of Ca2+/H+ antiporter protein YfkE reveals the mechanisms of Ca2+ efflux and its pH regulation[J]. Proceedings of the National Academy of Sciences, 2013,110(28):11367-11372.
doi: 10.1073/pnas.1302515110 URL |
[29] |
Pittman J K, Hirschi K D. CAX-ing a wide net: Cation/H+ transporters in metal remediation and abiotic stress signalling[J]. Plant Biology, 2016,18(5):741-749.
doi: 10.1111/plb.12460 URL pmid: 27061644 |
[30] |
Manohar M, Shigaki T, Hirschi K D. Plant cation/H+ exchangers (CAXs): biological functions and genetic manipulations[J]. Plant Biology, 2011,13(4).
doi: 10.1111/j.1438-8677.2011.00466.x URL pmid: 21668596 |
[31] |
White P J, Broadley M R. Calcium in plants[J]. Annals of Botany, 2003,92(4):487-511.
doi: 10.1093/aob/mcg164 URL pmid: 12933363 |
[32] |
Kim K M, Park Y H, Kim C K, et al. Development of transgenic Rice plants overexpressing the Arabidopsis H+/Ca2+antiporter CAX1 gene[J]. Plant Cell Reports, 2005,23(10-11):678-682.
doi: 10.1007/s00299-004-0861-4 URL pmid: 15372195 |
[33] |
Park S, Hui N, Jon K C. Increased calcium levels and prolonged shelf life in tomatoes expressing Arabidopsis H+/Ca2+transporters.[J]. Plant physiology, 2005,139(3):1194-206.
doi: 10.1104/pp.105.066266 URL pmid: 16244156 |
[34] | Zhao J, Barkla B J, Marshall J, et al. The Arabidopsis CAX3 mutants display altered salt tolerance, pH sensitivity and reduced plasma membrane H+ -ATPase activity[J]. Plant, 2008,227:659-669. |
[35] |
Garnett H M, Kemp R B. (Ca2+/Mg2+)activated ATPases in the plasma membrane of mouse liver cells[J]. BBA - Biomembranes, 1975,382(4):526-533.
doi: 10.1016/0005-2736(75)90219-9 URL pmid: 1125244 |
[36] |
Transporter CAX1 Increase CBF/DREB1 Expression and the Cold-Acclimation Response in Arabidopsis[J]. Plant Cell, 2003,15(12):2940-2951.
doi: 10.1105/tpc.015248 URL pmid: 14630965 |
[37] |
Shigaki T, Hirschi K. Characterization of CAX-like genes in plants: implications for functional diversity[J]. Gene, 2000,257(2):291-298.
doi: 10.1016/s0378-1119(00)00390-5 URL pmid: 11080595 |
[38] |
Hirschi K D. Expression of Arabidopsis CAX1 in Tobacco: Altered Calcium Homeostasis and Increased Stress Sensitivity[J]. The Plant Cell, 1999,11(11):2113-2122.
doi: 10.1105/tpc.11.11.2113 URL pmid: 10559438 |
[39] |
Shigaki T, Rees I, Nakhleh L, et al. Identification of three distinct phylogenetic groups of CAX cation/proton antiporters[J]. Journal of Molecular Evolution, 2006,63(6):815-825.
doi: 10.1007/s00239-006-0048-4 URL pmid: 17086450 |
[40] | Shen G M, Du Q Z, Wang J X. Involvement of Plasma Membrane Ca2+/H+ Antiporter in Cd2+ Tolerance[J]. Rice Science, 2012,19(2). |
[41] |
Korenkov V, Hirschi K, Wagner C G J. Enhancing tonoplast Cd/H antiport activity increases Cd, Zn, and Mn tolerance, and impacts root/shoot Cd partitioning in Nicotiana tabacum L.[J]. Planta, 2007,226(6):1379-1387.
doi: 10.1007/s00425-007-0577-0 URL pmid: 17636324 |
[42] | Wu Q, Shigaki T, Williams K A, et al. Expression of an Arabidopsis Ca2+/H+ antiporter CAX1 variant in petunia enhances cadmium tolerance and accumulation[J]. Journal of Plant Physiology, 2011,168(2):0-173. |
[43] |
Zhang M, Zhang J, Lu L L, et al. Functional analysis of CAX2 like transporters isolated from two ecotypes of Sedum alfredii[J]. Biologia Plantarum, 2016,60(1):37-47.
doi: 10.1007/s10535-015-0557-3 URL |
[44] |
Mei H, Cheng N H, Zhao J, et al. Root development under metal stress in Arabidopsis thaliana requires the H+/cation antiporter CAX4[J]. New Phytologist, 2009,183(1):95-105.
URL pmid: 19368667 |
[45] |
Hirschi K D, Korenkov V D, Wilganowski N L, et al. Expression of Arabidopsis CAX2 in tobacco. Altered metal accumulation and increased manganese tolerance[J]. Plant Physiology, 2000,124(1):125.
doi: 10.1104/pp.124.1.125 URL pmid: 10982428 |
[46] |
Serrano R, Kielland-Brandt M C, Fink G R. Yeast plasma membrane ATPase is essential for growth and has homology with (Na+/K+), K+ and Ca2+-ATPases[J]. Nature, 1986,319(6055).
doi: 10.1038/319678a0 URL pmid: 2419758 |
[47] | 杨颖丽, 杨宁, 安黎哲, 等. 植物质膜H+-ATPase的研究进展[J]. 西北植物学报 , 2006(11):2388-2396. |
[48] | 吴玉姣. 拟南芥钙结合蛋白SCaBP3调控质膜H+-ATPase自抑制活性机制的研究[D]. 北京:中国农业大学, 2016. |
[49] |
Eren E, Argüello J M. Arabidopsis HMA2, a divalent heavy metal-transporting P(IB)-type ATPase, is involved in cytoplasmic Zn2+ homeostasis.[J]. Plant Physiology, 2004,136(3):3712-3723.
doi: 10.1104/pp.104.046292 URL pmid: 15475410 |
[50] |
黄白飞, 辛俊亮. 植物积累重金属的机理研究进展[J]. 草业学报, 2013,22(1):300-307.
doi: 10.11686/cyxb20130137 URL |
[51] | Guilian M. Plant plasma memnrane H+-ATPase and its response to stresses[J]. Journal of Ningxia Agricultural College, 2003. |
[52] |
Morsomme P, Boutry M. The plant plasma membrane H+-ATPase: structure, function and regulation[J]. BBA - Biomembranes, 2000,1465(1):1-16.
doi: 10.1016/S0005-2736(00)00128-0 URL |
[53] |
Zhang M, Zhang J, Lu L L, et al. Functional analysis of CAX2 like transporters isolated from two ecotypes of Sedum alfredii[J]. Biologia Plantarum, 2016,60(1):37-47.
doi: 10.1007/s10535-015-0557-3 URL |
[54] |
Zhigang A, Cuijie L, Yuangang Z, et al. Expression of BjMT2, a metallothionein 2 from Brassica juncea, increases copper and cadmium tolerance in Escherichia coli and Arabidopsis thaliana, but inhibits root elongation in Arabidopsis thaliana seedlings[J]. Journal of Experimental Botany, 2006,57(14):3575.
doi: 10.1093/jxb/erl102 URL pmid: 16957018 |
[55] |
Nelson N. Evolution of organellar proton ATPases[J]. Biochimica Et Biophysica Acta, 1992,1100(2):109.
doi: 10.1016/0005-2728(92)90072-a URL pmid: 1535221 |
[56] |
Lin Y F, Aarts M G M. The molecular mechanism of zinc and cadmium stress response in plants[J]. Cellular & Molecular Life Sciences, 2012,69(19):3187-3206.
doi: 10.1007/s00018-012-1089-z URL pmid: 22903262 |
[57] |
Takahashi R, Bashir K, Ishimaru Y, et al. The role of heavy-metal ATPases, HMAs, in zinc and cadmium transport in Rice[J]. Plant Signaling& Behavior, 2012,7(12):1605-1607.
doi: 10.4161/psb.22454 URL pmid: 23072989 |
[58] |
Hanikenne M, Talke I N, Haydon M J, et al. Evolution of metal hyperaccumulation required cisregulatory changes and triplication of HMA4[J]. Nature, 2008,453(7193):391-395.
doi: 10.1038/nature06877 URL pmid: 18425111 |
[59] |
Morel M, Crouzet J, Gravot A, et al. AtHMA3, a P1B-ATPase Allowing Cd/Zn/Co/Pb Vacuolar Storage in Arabidopsis[J]. Plant Physiology, 2009,149(2):894-904.
doi: 10.1104/pp.108.130294 URL pmid: 19036834 |
[60] |
Craciun A R, Meyer C L, Chen J, et al. Variation in HMA4 gene copy number and expression among Noccaea caerulescens populations presenting different levels of Cd tolerance and accumulation[J]. Journal of Experimental Botany, 2012,63(11):4179-4189.
doi: 10.1093/jxb/ers104 URL pmid: 22581842 |
[61] |
Sakano K. Revision of Biochemical pH-Stat: Involvement of Alternative Pathway Metabolisms[J]. Plant and cell physiology, 1998,39(5):467-473.
doi: 10.1093/oxfordjournals.pcp.a029393 URL |
[62] |
Fuglsang A T, Guo Y, Cuin T A, et al. Arabidopsis Protein Kinase PKS5 Inhibits the Plasma Membrane H+-ATPase by Preventing Interaction with Protein[J]. Plant Cell, 2007,19(5):1617-1634.
URL pmid: 17483306 |
[63] |
Dettmer J, Hong-Hermesdorf A, Stierhof Y D, et al. Vacuolar H+-ATPase activity is required for endocytic and secretory trafficking in Arabidopsis[J]. Plant Cell, 2006,18(3):715-730.
doi: 10.1105/tpc.105.037978 URL pmid: 16461582 |
[64] |
Tian S, Lu L, Labavitch J, et al. Cellular Sequestration of Cadmium in the Hyperaccumulator Plant Species Sedum alfredii[J]. Plant Physiology, 2011,157(4):1914-1925.
doi: 10.1104/pp.111.183947 URL |
[65] |
Ueno D, Milner M J, Yamaji N, et al. Elevated expression of TcHMA3 plays a key role in the extreme Cd tolerance in a Cd hyperaccumulating ecotype of Thlaspi caerulescens[J]. The Plant Journal, 2011,66(5):852-862.
doi: 10.1111/j.1365-313X.2011.04548.x URL pmid: 21457363 |
[66] |
Yatime L, Buchpedersen M J, Musgaard M, et al. P-type ATPases as drug targets: tools for medicine and science[J]. Biochimica Et Biophysica Acta, 2009,1787(4):207-220.
doi: 10.1016/j.bbabio.2008.12.019 URL pmid: 19388138 |
[67] |
Cheng N H. The Arabidopsis CAX1 mutant exhibits impaired ion homeostasis, development, and hormonal responses and reveals interplay among vacuolar transporters[J]. Plant Cell, 2003,15(2):347-64.
doi: 10.1105/tpc.007385 URL pmid: 12566577 |
[68] |
Zhao J, Barkla B J, Marshall J, et al. The Arabidopsis CAX3 mutants display altered salt tolerance, pH sensitivity and reduced plasma membrane H+-ATPase activity[J]. Planta, 2008,227(3):659-669.
doi: 10.1007/s00425-007-0648-2 URL pmid: 17968588 |
[69] |
Cheng N H, Pittman J K, Shigaki T, et al. Functional association of Arabidopsis CAX1 and CAX3 is required for normal growth and ion homeostasis[J]. Plant Physiology, 2005,138(4):2048-2060.
doi: 10.1104/pp.105.061218 URL pmid: 16055687 |
[70] |
Zhao J, Shigaki T, Mei H, et al. Interaction between Arabidopsis Ca2+/H+ exchangers CAX1 and CAX3[J]. Journal of Biological Chemistry, 2009,284(7):4605-4615.
doi: 10.1074/jbc.M804462200 URL pmid: 19098009 |
[71] |
Shigaki T, Rees L, Nakhleh L, et al. Identification of three distinct phylogenetic groups of CAX cation of three distinct phylogenetic groups of CAX cation/ptoton antiporters[J]. Journal of Molecular Evolution, 2006,63(6):815-825.
doi: 10.1007/s00239-006-0048-4 URL pmid: 17086450 |
[72] |
Zhang M, Zhang J, Lu LL, et al. Functional analysis of CAX2 like transporters isolated from two ecotypes of Sedum alfredii[J]. Biologia Plantarum, 2016,60(1):37-47.
doi: 10.1007/s10535-015-0557-3 URL |
[73] |
Baxter I, Tchieu J, Sussman M R, et al. Genomic Comparison of P-Type ATPase Ion Pumps in Arabidopsis and Rice[J]. Plant Physiology, 2003,132(2):618-628.
doi: 10.1104/pp.103.021923 URL pmid: 12805592 |
[74] | 徐璐, 郭善利, 尹海波. Na+/H+向转运蛋白与植物耐盐性研究[J]. 湖北农业学, 2016,55(11):2727-2730,2758. |
[75] | 王吉秀, 祖艳群, 陈海燕, 等. 表面活性剂对小花南芥(Arabis alpinal Var. parviflora Franch)累积铅锌的促进作用[J]. 生态环境学报, 2010,19(8):1923-1929. |
[76] |
Pittman J K. Involvement of Plasma Membrane Ca2+/H+ Antiporter in Cd2+ Tolerance[J]. Rice Science, 2012,19(02):161-165.
doi: 10.1016/S1672-6308(12)60035-3 URL |
[77] |
Hanikenne M, Talke I N, Haydon M J, et al. Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4[J]. Nature, 2008,453(7193):391-395.
doi: 10.1038/nature06877 URL pmid: 18425111 |
[1] | 韩佳希, 范中菡, 董义霞, 吕昕芮, 李红春, 陈庆华, 李洪浩, 林立金, 胡容平. 脱落酸对葡萄幼苗镉积累的影响[J]. 中国农学通报, 2022, 38(34): 46-51. |
[2] | 高琳琳, 王陈丝丝, 张宁, 胡含秀, 马友华. 石灰配施有机物料对稻麦轮作土壤镉影响研究[J]. 中国农学通报, 2022, 38(3): 81-86. |
[3] | 权胜祥, 史学峰, 刘晓月, 李昌武, 葛燚, 张燕. 可降解螯合剂强化籽粒苋修复镉污染耕地的研究[J]. 中国农学通报, 2022, 38(25): 85-89. |
[4] | 高中超, 孙磊, 王丽华, 杜春影, 张利国, 张久明, 王伟, 谷维. 土壤中不同含量Cd2+对大麻、大豆幼苗生育的影响[J]. 中国农学通报, 2022, 38(22): 89-92. |
[5] | 雷星宇, 胡瑶, 邓钢桥, 李宏告, 张跃龙, 胡蝶, 李丽辉. 钝化剂对卷丹百合镉含量及生理特性的影响[J]. 中国农学通报, 2022, 38(19): 66-72. |
[6] | 张耿苗, 赵钰杰. 诸暨市不同作物对土壤镉铅吸收的研究:富集系数和安全阈值[J]. 中国农学通报, 2022, 38(18): 100-106. |
[7] | 黄成, 李旭楠, 李诗燕, 王锦达. 植物SWEET基因家族的研究进展[J]. 中国农学通报, 2022, 38(17): 17-26. |
[8] | 吴题, 魏晓玲, 冯常青, 黄云侠, 徐时长, 邱福祥, 郑英洁, 李文卿, 何华勤. 烟草MRS2/MGT基因家族的鉴定与表达分析[J]. 中国农学通报, 2022, 38(16): 18-26. |
[9] | 文雄, 范成五, 韩茂德, 邵代兴, 秦松, 柴冠群. 炭基及硅酸盐类钝化剂对辣椒地土壤中度Cd污染效应研究[J]. 中国农学通报, 2022, 38(15): 98-104. |
[10] | 周芬, 刘源, 李中阳, 李宝贵, 李乐乐, 陶甄. 调理剂与耕作栽培措施修复镉污染麦田土壤效果研究[J]. 中国农学通报, 2022, 38(13): 120-126. |
[11] | 周婉婷, 汪曼, 周翔, 高卓, 李佳佳, 李王胜, 李思琪, 王雪倩, 王录红, 刘大丽. 甜菜BvGSTU9基因的生物信息学及在镉胁迫下的表达分析[J]. 中国农学通报, 2021, 37(36): 111-118. |
[12] | 汪曼, 周婉婷, 周翔, 李思琪, 王雪倩, 王录红, 李王胜, 李佳佳, 高卓, 刘大丽. 能源甜菜转录因子BvMYB44基因响应镉胁迫的表达特性及生物信息学分析[J]. 中国农学通报, 2021, 37(35): 25-33. |
[13] | 柴冠群, 刘桂华, 罗沐欣键, 秦松, 范成五. 硒肥与钝化材料组配对土壤Cd钝化及稻米Cd消减效果[J]. 中国农学通报, 2021, 37(32): 102-107. |
[14] | 范占煌, 张振乾. 甘蓝型油菜在镉污染土壤修复中的应用研究[J]. 中国农学通报, 2021, 37(30): 72-76. |
[15] | 方克明, 肖欣, 王美玲, 张露, 汪璐, 秦蕾影, 章明, 江麟, 朱安繁. 农用石灰在酸性及镉污染稻田中试效果[J]. 中国农学通报, 2021, 37(26): 93-97. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||