中国农学通报 ›› 2021, Vol. 37 ›› Issue (21): 119-125.doi: 10.11924/j.issn.1000-6850.casb2021-0262
所属专题: 生物技术
杜晓雪1,2(), 黄园园1,2, 马春泉1,2(
), 李海英1,2(
)
收稿日期:
2021-03-16
修回日期:
2021-04-13
出版日期:
2021-07-25
发布日期:
2021-07-29
通讯作者:
马春泉,李海英
作者简介:
杜晓雪,女,1994年出生,内蒙古兴安盟人,硕士,研究方向:寒区植物遗传与功能基因组。通信地址:150080 黑龙江省哈尔滨市学府路74号 黑龙江大学生命科学学院320室,E-mail: 基金资助:
Du Xiaoxue1,2(), Huang Yuanyuan1,2, Ma Chunquan1,2(
), Li Haiying1,2(
)
Received:
2021-03-16
Revised:
2021-04-13
Online:
2021-07-25
Published:
2021-07-29
Contact:
Ma Chunquan,Li Haiying
摘要:
Dof(DNA binding with one finger)家族转录因子是植物特异的转录因子,在胁迫响应、种子发芽、氮同化、光合作用等多种生物学过程中发挥着重要作用。为了探究转录因子BvM14-Dof3.4在响应盐胁迫过程中的生物学功能,本研究以具有强耐盐特性的甜菜M14品系为试验材料,用花序浸染法将BvM14-Dof3.4基因在野生型拟南芥植株中异源表达,经150 mmol/L NaCl处理后发现,BvM14-Dof3.4基因的异源表达促进了盐胁迫下转基因拟南芥植株根的生长,提高了异源表达植株的鲜重和干重,与野生型拟南芥相比异源表达植株中K+/Na+比值增加1.3倍、甜菜碱含量增加1.1倍以及SOD和POD的酶活性分别上调1.3和1.2倍,从而减少了盐胁迫对异源表达拟南芥植株的损伤。这些结果表明了BvM14-Dof3.4基因响应盐胁迫,并且BvM14-Dof3.4基因的异源表达能够提高拟南芥植株的耐盐能力,该结果对甜菜M14品系优质基因资源的挖掘以及开展栽培甜菜抗逆性的遗传改良工作具有重要意义。
中图分类号:
杜晓雪, 黄园园, 马春泉, 李海英. 转录因子BvM14-Dof3.4响应盐胁迫的功能研究[J]. 中国农学通报, 2021, 37(21): 119-125.
Du Xiaoxue, Huang Yuanyuan, Ma Chunquan, Li Haiying. Transcription Factor BvM14-Dof 3.4 in Response to Salt Stress: Functional Study[J]. Chinese Agricultural Science Bulletin, 2021, 37(21): 119-125.
引物功能 | 引物名称 | 序列 |
---|---|---|
PCR引物 | BvM14-Dof3.4-S | 5'-ATGGGTGGAGGCGGAGGC-3' |
BvM14-Dof3.4-AS | 5'-TCACTTGAGACCATTGGCTGATG-3' | |
荧光定量PCR引物 | 18S-S | 5'-CCCCAATGGATCCTCGTT A-3' |
18S-AS | 5'-TGACGGAGAATTAGGGTT CG-3' | |
dof -S | 5'-GTGGAGGTGGTGGGTTTA-3' | |
dof-AS | 5'-TCCGTTTTCATTATTATT-3' | |
构建35S::pCAMBIA1300-BvM14-Dof3.4引物 | 1300-S | 5'-CGAGCTCATGGGTGGAGGCGGAGGCGGAGGT-3' |
1300-AS | 5'-CGAGATCTTCACTTGAGACCATTGGCTGATGT-3' |
引物功能 | 引物名称 | 序列 |
---|---|---|
PCR引物 | BvM14-Dof3.4-S | 5'-ATGGGTGGAGGCGGAGGC-3' |
BvM14-Dof3.4-AS | 5'-TCACTTGAGACCATTGGCTGATG-3' | |
荧光定量PCR引物 | 18S-S | 5'-CCCCAATGGATCCTCGTT A-3' |
18S-AS | 5'-TGACGGAGAATTAGGGTT CG-3' | |
dof -S | 5'-GTGGAGGTGGTGGGTTTA-3' | |
dof-AS | 5'-TCCGTTTTCATTATTATT-3' | |
构建35S::pCAMBIA1300-BvM14-Dof3.4引物 | 1300-S | 5'-CGAGCTCATGGGTGGAGGCGGAGGCGGAGGT-3' |
1300-AS | 5'-CGAGATCTTCACTTGAGACCATTGGCTGATGT-3' |
[1] |
Wang Y, Stevanato P, Yu L, et al. The physiological and metabolic changes in sugar beet seedlings under different levels of salt stress[J]. Journal of Plant Research, 2017, 130:1079-1093.
doi: 10.1007/s10265-017-0964-y URL |
[2] | 张自强, 白晨, 张惠忠, 等. 甜菜耐盐性形态学、生理生化特性及分子水平研究进展[J]. 作物杂志, 2020:27-33. |
[3] | 李洪丽, 杨娜, 端木慧子. 甜菜M14品系与二倍体栽培甜菜耐盐性的比较研究[J]. 植物营养与肥料学报, 2020, 26:191-200. |
[4] | 王佺珍, 刘倩, 高娅妮, 等. 植物对盐碱胁迫的响应机制研究进展[J]. 生态学报, 2017, 37:5565-5577. |
[5] |
Yanagisawa S. A novel DNA-binding domain that may form a single zinc finger motif[J]. Nucleic Acids Research, 1995, 23(17):3403-3410.
pmid: 7567449 |
[6] |
Yanagisawa S. The Dof family of plant transcription factors[J]. Trends in Plant Science, 2002, 7(12):555-560.
pmid: 12475498 |
[7] |
Shu Y J, Song L L, Zhang J, et al. Genome-wide identification and characterization of the Dof gene family in Medicago truncatula[J]. Genetics and Molecular Research, 2015, 14(3):10645-10657.
doi: 10.4238/2015.September.9.5 pmid: 26400295 |
[8] |
Fornara F, Panigrahi K C, Gissot L, et al. Arabidopsis DOF transcription factors act redundantly to reduce CONSTANS expression and are essential for a photoperiodic flowering response[J]. Developmental Cell, 2009, 17(1):75-86.
doi: 10.1016/j.devcel.2009.06.015 pmid: 19619493 |
[9] |
Lijavetzky D, Carbonero P, Vicente-Carbajosa J. Genome-wide comparative phylogenetic analysis of the rice and Arabidopsis Dof gene families[J]. BMC Evolutionary Biology, 2003, 3:17.
pmid: 12877745 |
[10] |
Kushwaha H, Gupta S, Singh V K, et al. Genome wide identification of Dof transcription factor gene family in sorghum and its comparative phylogenetic analysis with rice and Arabidopsis[J]. Molecular Biology Reports, 2011, 38(8):5037-5053.
doi: 10.1007/s11033-010-0650-9 pmid: 21161392 |
[11] |
Malviya N, Gupta S, Singh V K, et al. Genome wide in silico characterization of Dof gene families of pigeonpea (Cajanus cajan (L) Millsp.)[J]. Molecular Biology Reports, 2015, 42(2):535-552.
doi: 10.1007/s11033-014-3797-y pmid: 25344821 |
[12] |
Venkatesh J, Park S W. Genome-wide analysis and expression profiling of DNA-binding with one zinc finger (Dof) transcription factor family in potato[J]. Plant Physiology and Biochemistry, 2015, 94:73-85.
doi: 10.1016/j.plaphy.2015.05.010 pmid: 26046625 |
[13] |
Ma J, Li M Y, Wang F, et al. Genome-wide analysis of Dof family transcription factors and their responses to abiotic stresses in Chinese cabbage[J]. BMC Genomics, 2015, 16(1):33.
doi: 10.1186/s12864-015-1242-9 URL |
[14] |
Kang W H, Kim S, Lee H A, et al. Genome-wide analysis of Dof transcription factors reveals functional characteristics during development and response to biotic stresses in pepper[J]. Scientific Reports, 2016, 6:33332.
doi: 10.1038/srep33332 URL |
[15] |
Huang W, Huang Y, Li M Y, et al. Dof transcription factors in carrot: genome-wide analysis and their response to abiotic stress[J]. Biotechnology Letters, 2016, 38(1):145-155.
doi: 10.1007/s10529-015-1966-2 pmid: 26466595 |
[16] |
Wen C L, Cheng Q, Zhao L, et al. Identification and characterisation of Dof transcription factors in the cucumber genome[J]. Scientific Reports, 2016, 6:23072.
doi: 10.1038/srep23072 URL |
[17] |
Cai X, Zhang Y, Zhang C, et al. Genome-wide analysis of plant-specific Dof transcription factor family in tomato[J]. Journal of Integrative Plant Biology, 2013, 55(6):552-566.
doi: 10.1111/jipb.12043 URL |
[18] |
Yang X, Tuskan G A, Cheng M Z. Divergence of the Dof gene families in poplar, Arabidopsis, and rice suggests multiple modes of gene evolution after duplication[J]. Plant Physiology, 2006, 142(3):820-830.
doi: 10.1104/pp.106.083642 URL |
[19] |
Shaw L M, McIntyre C L, Gresshoff P M, et al. Members of the Dof transcription factor family in Triticum aestivum are associated with light-mediated gene regulation[J]. Functional and Integrative Genomics, 2009, 9(4):485-498.
doi: 10.1007/s10142-009-0130-2 URL |
[20] |
Guo Y, Qiu L J. Retraction: Genome-wide analysis of the Dof transcription factor gene family reveals soybean-specific duplicable and functional characteristics[J]. PLoS One, 2016, 11(11):e0167019.
doi: 10.1371/journal.pone.0167019 URL |
[21] |
Zang D, Wang L, Zhang Y, et al. ThDof1.4 and ThZFP1 constitute a transcriptional regulatory cascade involved in salt or osmotic stress in Tamarix hispida[J]. Plant Molecular Biology, 2017, 94:495-507.
doi: 10.1007/s11103-017-0620-x URL |
[22] |
Su Y, Liang W, Liu Z, et al. Overexpression of GhDof1 improved salt and cold tolerance and seed oil content in Gossypium hirsutum[J]. Journal of Plant Physiology, 2017, 218:222-234.
doi: 10.1016/j.jplph.2017.07.017 URL |
[23] |
Cai X, Zhang C, Shu W, et al. The transcription factor SlDof22 involved in ascorbate accumulation and salinity stress in tomato[J]. Biochemical and Biophysical Research Communications, 2016, 474(4):736-741.
doi: 10.1016/j.bbrc.2016.04.148 URL |
[24] |
Gupta S, Arya G C, Malviya N, et al. Molecular cloning and expression profiling of multiple Dof genes of Sorghum bicolor (L) Moench[J]. Molecular Biology Reports, 2016, 43(8):767-774.
doi: 10.1007/s11033-016-4019-6 URL |
[25] |
Cheng Z, Hou D, Liu J, et al. Characterization of moso bamboo (Phyllostachys edulis) Dof transcription factors in floral development and abiotic stress responses[J]. Genome, 2018, 61:151-156.
doi: 10.1139/gen-2017-0189 URL |
[26] |
Yang L, Zhang Y, Zhu N, et al. Proteomic analysis of salt tolerance in sugar beet monosomic addition line M14[J]. Journal of Proteome Research, 2013, 12:4931-4950.
doi: 10.1021/pr400177m pmid: 23799291 |
[27] |
Wu C, Ma C, Pan Y, et al. Sugar beet M14 glyoxalase I gene can enhance plant tolerance to abiotic stresses[J]. Journal of Plant Research, 2013, 126:415-25.
doi: 10.1007/s10265-012-0532-4 URL |
[28] | 马春泉, 黄园园, 李海英. 甜菜M14品系BvM14-Dof3.4基因的克隆及响应盐胁迫表达分析[J]. 中国农学通报, 2020, 36:36-41. |
[29] |
Gupta S, Malviya N, Kushwaha H, et al. Insights into structural and functional diversity of Dof (DNA binding with one finger) transcription factor[J]. Planta, 2015, 241(3):549-562.
doi: 10.1007/s00425-014-2239-3 pmid: 25564353 |
[30] | 杜锦, 方雷, 向春阳. 不同浓度NaCl对2个玉米品种Na+、K+、Ca2+含量的影响[J]. 中国农学通报, 2011, 27:72-75. |
[31] | 才晓溪, 沈阳, 胡冰霜, 等. 野生大豆类受体蛋白激酶基因GsCBRLK超量表达提高水稻耐盐碱性[J]. 植物生理学报, 2020, 56(12):2683-2694. |
[32] | 朱玉鹏, 孟祥浩, 盖伟玲, 等. 盐胁迫对冬小麦花后抗氧化酶、渗透调节物质的影响[J]. 中国农学通报, 2017, 33:1-6. |
[1] | 巩永永, 端木慧子. 甜菜TIFY基因家族的全基因组鉴定与生物信息学分析[J]. 中国农学通报, 2022, 38(8): 17-24. |
[2] | 刘青松, 贾艳丽, 肖宇, 郭志顶, 纪明妹, 赵忠祥, 黄素芳, 岳明强, 刘震, 阎旭东, 徐玉鹏. 盐胁迫对苜蓿生理性状和生长性状的影响[J]. 中国农学通报, 2022, 38(8): 96-101. |
[3] | 余兰, 王浩然, 张莹, 邢红运, 丁琪, 赵宝珍, 崔娜. 转录因子MYCs调控番茄表皮毛萜类化合物的分子机制研究进展[J]. 中国农学通报, 2022, 38(6): 87-93. |
[4] | 张宇阳, 周雪, 刘灵艺, 许吴俊, 任旭琴, 王广龙, 熊爱生. 大蒜几丁质酶基因AsCHI1的鉴定及其对盐胁迫的响应[J]. 中国农学通报, 2022, 38(5): 23-29. |
[5] | 王盛昊, 于冰. 甜菜M14品系BvM14-UNG基因克隆及生物信息学分析[J]. 中国农学通报, 2022, 38(4): 16-22. |
[6] | 徐晓美, 李颖, 衡周, 徐小万, 李涛, 王恒明. 响应辣椒疫霉菌诱导的CaWRKY转录因子筛选及其信号通路分析[J]. 中国农学通报, 2022, 38(32): 22-31. |
[7] | 王洋, 张瑞, 周雨晴, 刘永昊, 刘高生, 戴其根. 基于文献计量的国内水稻耐盐性研究态势分析[J]. 中国农学通报, 2022, 38(31): 147-153. |
[8] | 郭东森, 王琳, 魏启舜, 崔联明, 周影, 郭成宝. 羽毛生物降解液对盐胁迫下小白菜生长的生理调控作用[J]. 中国农学通报, 2022, 38(25): 25-29. |
[9] | 马贵芳, 辛海波, 修莉, 孙朝霞, 张华. 荞麦脱壳性状的研究进展[J]. 中国农学通报, 2022, 38(24): 19-27. |
[10] | 黄平升, 刘世男, 李婷, 覃永华. 外源硅对盐胁迫下黄果厚壳桂幼苗的光合荧光及抗氧化特性的影响[J]. 中国农学通报, 2022, 38(23): 32-38. |
[11] | 邢起铭, 金文杰, 周利斌, 李文建, 刘瑞媛, 马建忠. 植物根际促生菌提高植物耐盐性的研究进展[J]. 中国农学通报, 2022, 38(11): 46-52. |
[12] | 王明泉, 付立新, 李国良, 扈光辉, 任洪雷, 胡少新, 杨剑飞, 刘畅, 龚士琛. 玉米抗感种质资源苗期耐盐性的光合作用机制研究[J]. 中国农学通报, 2021, 37(5): 8-14. |
[13] | 马慧敏, 孙培琳, 马春泉. 转录因子BvM14-GAI耐盐功能研究[J]. 中国农学通报, 2021, 37(34): 34-42. |
[14] | 王雪, 王盛昊, 于冰. 转录因子和启动子互作分析技术及其在植物应答逆境胁迫中的研究进展[J]. 中国农学通报, 2021, 37(33): 112-119. |
[15] | 王爽, 李海英. 甜菜应答盐胁迫PUB基因的生物信息学分析[J]. 中国农学通报, 2021, 37(33): 120-127. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 881
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 460
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||