欢迎访问《中国农学通报》,

中国农学通报 ›› 2026, Vol. 42 ›› Issue (2): 1-9.doi: 10.11924/j.issn.1000-6850.casb2025-0238

• 农学·农业基础科学 •    下一篇

ERF转录因子调控玉米抗逆性的研究进展

徐铭婕1(), 李念1, 郭书磊2, 韩赞平1()   

  1. 1 河南科技大学农学院, 河南洛阳 471000
    2 河南省农业科学院粮食作物研究所, 郑州 450002
  • 收稿日期:2025-03-26 修回日期:2025-06-15 出版日期:2026-01-25 发布日期:2026-01-22
  • 通讯作者:
    韩赞平,男,1975年出生,河南孟津人,副教授,研究方向:玉米遗传改良。通信地址:471023 河南省洛阳市洛龙区河南科技大学农学院, E-mail:
  • 作者简介:

    徐铭婕,女,2002年出生,江苏南通人,硕士研究生,研究方向:玉米分子遗传学。通信地址:471023 河南省洛阳市洛龙区河南科技大学农学院,E-mail:

  • 基金资助:
    河南科技大学科研启动基金“优异玉米种质资源创制”(13480069); 河南省科技研发联合基金玉米叶宽基因ZmNAL4的分子调控机制解析(242301420122); 国家自然科学基金项目“玉米窄叶突变基因ZmNAL4的功能及分子机理解析(32001565)

Regulation of Stress Resistance in Maize by ERF Transcription Factors: A Review

XU Mingjie1(), LI Nian1, GUO Shulei2, HAN Zanping1()   

  1. 1 College of Agriculture, Henan University of Science and Technology, Luoyang, Henan 471000
    2 Cereal Institute, Henan Academy of Agricultural Science, Zhengzhou 450002
  • Received:2025-03-26 Revised:2025-06-15 Published:2026-01-25 Online:2026-01-22

摘要:

ERF(Ethylene Responsive Factor)转录因子是AP2/ERF家族的一个重要亚家族,其特征是高度保守的AP2结构域。它们特异性识别并结合靶基因启动子中的顺式作用元件,如GCC-box和DRE/CRT,在植物对生物和非生物胁迫的反应中发挥核心调节作用。ERF家族的成员主要参与调节对干旱、高盐、低温和缺氧等非生物胁迫的响应,而其他成员则通过水杨酸、茉莉酸等激素信号通路介导对病原体等生物胁迫的抗性。近年来,在玉米中发现多个参与胁迫响应的ERF关键成员,并通过遗传转化证实它们在增强抗旱性、耐盐性和抗病性等方面的关键作用。通过文献调研与归纳分析,本文综述玉米ERF转录因子的结构特征、功能分类,重点解析其在生物与非生物胁迫下的调控机制及网络。结果显示,ERF转录因子通过保守AP2结构域结合GCC-box、DRE/CRT等顺式元件,参与脱落酸(ABA)、茉莉酸(JA)、乙烯(ET)等激素信号通路,调控下游抗逆基因表达;已鉴定229个玉米AP2/ERF家族基因,其中105个ERF亚家族成员分别响应干旱、盐、极端温度等非生物胁迫及大斑病凸脐蠕孢、禾谷镰孢菌等生物胁迫,部分基因(如ZmERF21ZmEREB92)具广谱抗逆潜力。ERF转录因子是玉米抗逆调控网络的核心节点,通过多途径协同增强抗逆性。未来需结合ChIP-seq、基因编辑等技术解析ERF靶标基因与互作网络,挖掘优异等位变异,为玉米抗逆分子设计育种提供基因资源与理论支撑。

关键词: 玉米, 乙烯响应因子, 转录因子, 非生物胁迫, 生物胁迫

Abstract:

ERF (Ethylene Responsive Factor) transcription factors are an important subfamily of the AP2/ERF family, characterized by a highly conserved AP2 domain. They specifically recognize and bind to cis-acting elements such as GCC-box and DRE/CRT in the promoters of target genes, playing a central regulatory role in plant responses to biotic and abiotic stresses. Members of the ERF family are primarily involved in regulating responses to abiotic stresses such as drought, high salt, low temperature, and hypoxia, while others mediate resistance to biotic stresses like pathogens through hormone signaling pathways involving salicylic acid and jasmonic acid. In recent years, several key ERF members involved in stress responses have been identified in maize, and their crucial roles in enhancing drought tolerance, salt tolerance, and disease resistance have been confirmed through genetic transformation. Through literature research and inductive analysis, this review summarizes the structural characteristics and functional classification of ERF transcription factors in maize, with a focus on elucidating their regulatory mechanisms and networks under biotic and abiotic stress conditions. ERF transcription factors, via their conserved AP2 domain, bind to cis-acting elements such as the GCC-box and DRE/CRT, participate in phytohormone signaling pathways including abscisic acid (ABA), jasmonic acid (JA), and ethylene (ET) to regulate downstream stress-responsive gene expression. 229 maize AP2/ERF family genes have been identified, among which 105 ERF subfamily members respond to abiotic stresses such as drought, salinity, and extreme temperatures, as well as biotic stresses such as Exserohilum turcicum and Fusarium graminearum, some genes (e.g., ZmERF21 and ZmEREB92) have broad-spectrum stress tolerance potential. ERF transcription factors are the core nodes of maize stress resistance regulatory network, enhancing resilience through multiple collaborative approaches. Future research should integrate technologies like ChIP-seq and gene editing to further elucidate ERF target genes and interaction networks, excavate superior allelic variants, provide genetic resources and theoretical support for molecular design and breeding of maize stress resistance.

Key words: maize, ethylene response factor, transcription factors, abiotic stress, biotic stress