 
 中国农学通报 ›› 2021, Vol. 37 ›› Issue (20): 26-34.doi: 10.11924/j.issn.1000-6850.casb2020-0728
所属专题: 生物技术
        
               		高忠奎1( ), 蒋菁2, 韩柱强2, 黄志鹏2, 熊发前2, 唐秀梅2, 吴海宁2, 钟瑞春2, 刘菁2, 唐荣华2, 贺梁琼2(
), 蒋菁2, 韩柱强2, 黄志鹏2, 熊发前2, 唐秀梅2, 吴海宁2, 钟瑞春2, 刘菁2, 唐荣华2, 贺梁琼2( )
)
                  
        
        
        
        
    
收稿日期:2020-11-30
									
				
											修回日期:2021-05-10
									
				
									
				
											出版日期:2021-07-15
									
				
											发布日期:2021-08-06
									
			通讯作者:
					贺梁琼
							作者简介:高忠奎,男,1983年出生,吉林东辽人,助理研究员,硕士,研究方向为花生遗传育种。通信地址:530007 南宁市大学东路174号 广西农业科学院基地管理处,E-mail:基金资助:
        
               		Gao Zhongkui1( ), Jiang Jing2, Han Zhuqiang2, Huang Zhipeng2, Xiong Faqian2, Tang Xiumei2, Wu Haining2, Zhong Ruichun2, Liu Jing2, Tang Ronghua2, He Liangqiong2(
), Jiang Jing2, Han Zhuqiang2, Huang Zhipeng2, Xiong Faqian2, Tang Xiumei2, Wu Haining2, Zhong Ruichun2, Liu Jing2, Tang Ronghua2, He Liangqiong2( )
)
			  
			
			
			
                
        
    
Received:2020-11-30
									
				
											Revised:2021-05-10
									
				
									
				
											Online:2021-07-15
									
				
											Published:2021-08-06
									
			Contact:
					He Liangqiong  			     					     	
							摘要:
CRISPR是细菌或古生菌对入侵到体内的病毒,通过核酸特异性识别、Cas9蛋白酶切割产生的一种天然免疫系统。基于CRISPR/Cas9系统的基因组编辑技术,通过sgRNA介导和Cas9蛋白切割实现对靶基因的定点编辑。因其操作简便、编辑效率高、适用范围广的特点,迅速成为研究植物、动物、微生物基因功能的重要手段。同时,随着大量基因组信息和相应数据库的广泛建立,CRISPR/Cas9技术利用反向遗传学,配合生物信息技术,成为遗传改良、创新特异种质的一种极有效的新手段。本文主要对CRISPR/Cas系统的基本原理、CRISPR/Cas9基因编辑技术的作用机制,以及CRISPR/Cas9技术在粮油作物遗传改良、品种选育研究中取得的进展进行了综述,为遗传育种工作者利用该技术进行遗传改良和品种优化升级育提供有效的参考。
中图分类号:
高忠奎, 蒋菁, 韩柱强, 黄志鹏, 熊发前, 唐秀梅, 吴海宁, 钟瑞春, 刘菁, 唐荣华, 贺梁琼. CRISPR/Cas9系统及其在粮油作物遗传改良中的研究进展[J]. 中国农学通报, 2021, 37(20): 26-34.
Gao Zhongkui, Jiang Jing, Han Zhuqiang, Huang Zhipeng, Xiong Faqian, Tang Xiumei, Wu Haining, Zhong Ruichun, Liu Jing, Tang Ronghua, He Liangqiong. CRISPR/Cas9 System and Its Research Progress in Grain and Oil Crop Genetic Improvement[J]. Chinese Agricultural Science Bulletin, 2021, 37(20): 26-34.
| 靶基因 | 启动子 | 结果 | 文献及年份 | |
|---|---|---|---|---|
| 突变率 | 突变材料类型 | |||
| ROC5, SPP, YSA | OsU6-2 | 4.8%~84% | 纯合或双等位基因突变植株 | Feng et al., 2013 | 
| CAO1, LAZY1 | OsU3 | 83.3%~91.6% | 纯合突变植株 | Miao et al., 2013 | 
| OsPDS, OsPMS3, OsEPSPS,OsDERF1, OsMSH1, OsMYB5, OsMYB1, OsROC5, OsSPP, OsYSA | OsU6-2, OsU6 | 21.1%~66.7% | 纯合突变植株 | Zhang et al., 2014 | 
| DEP1, EP3, Gn1a, GS3,GW2, LPA1, BADH2, Hd1 | OsU3 | 50.0%~100.0% | 纯合突变植株 | 沈兰等,2017b | 
| OsDTH11 | OsU3 | 11.8% | 纯合突变植株 | 王子璇等,2019 | 
| Hd2, Hd4, Hd5, Bath2 | U3, U6 | 70% | 目标株系 | 周文甲,2017 | 
| Badh2 | U6 | 37.5% | 目标株系 | 邵高能等,2018 | 
| GS3, Gn1a | OsU3 | 68.97%~93.3% | 目标株系 | 沈兰等,2017a | 
| TMS5 | -- | 60% | 目标株系 | 吴明基等,2018 | 
| Wx | U6 | 64.3% | 目标株系 | 冯璇等,2018 | 
| Wx | U6 | 91.1% | 目标株系 | 范美英等,2019 | 
| Pita, Pi21, ERF922 | U3 | 75%~85% | 目标株系 | 徐鹏等,2019 | 
| OsCDC48-T, OsEPSPS-T, OsLDMAR, OsDEP, OsALS-T | Ubi-1 | 21.8% | 突变体植株 | Lin etal, 2020 | 
| 靶基因 | 启动子 | 结果 | 文献及年份 | |
|---|---|---|---|---|
| 突变率 | 突变材料类型 | |||
| ROC5, SPP, YSA | OsU6-2 | 4.8%~84% | 纯合或双等位基因突变植株 | Feng et al., 2013 | 
| CAO1, LAZY1 | OsU3 | 83.3%~91.6% | 纯合突变植株 | Miao et al., 2013 | 
| OsPDS, OsPMS3, OsEPSPS,OsDERF1, OsMSH1, OsMYB5, OsMYB1, OsROC5, OsSPP, OsYSA | OsU6-2, OsU6 | 21.1%~66.7% | 纯合突变植株 | Zhang et al., 2014 | 
| DEP1, EP3, Gn1a, GS3,GW2, LPA1, BADH2, Hd1 | OsU3 | 50.0%~100.0% | 纯合突变植株 | 沈兰等,2017b | 
| OsDTH11 | OsU3 | 11.8% | 纯合突变植株 | 王子璇等,2019 | 
| Hd2, Hd4, Hd5, Bath2 | U3, U6 | 70% | 目标株系 | 周文甲,2017 | 
| Badh2 | U6 | 37.5% | 目标株系 | 邵高能等,2018 | 
| GS3, Gn1a | OsU3 | 68.97%~93.3% | 目标株系 | 沈兰等,2017a | 
| TMS5 | -- | 60% | 目标株系 | 吴明基等,2018 | 
| Wx | U6 | 64.3% | 目标株系 | 冯璇等,2018 | 
| Wx | U6 | 91.1% | 目标株系 | 范美英等,2019 | 
| Pita, Pi21, ERF922 | U3 | 75%~85% | 目标株系 | 徐鹏等,2019 | 
| OsCDC48-T, OsEPSPS-T, OsLDMAR, OsDEP, OsALS-T | Ubi-1 | 21.8% | 突变体植株 | Lin etal, 2020 | 
| 物种 | 靶基因 | 启动子 | 结果 | 文献及年份 | |
|---|---|---|---|---|---|
| 突变率 | 突变材料类型 | ||||
| 小麦 | TaGASR7、TaDEP1 | TaU6 | 26.0%~26.5% | 突变体植株 | Shan et al., 2013 | 
| TaMLO | TaU6 | -- | 突变体植株 | 王延鹏,等,2014 | |
| TaGASR7 | TaU6 | 1.5%~5.0% | 突变体植株 | Zhang et al., 2016 | |
| EDR1 | U3, U6 | -- | 突变体植株 | Zhang et al., 2017 | |
| TaMLO | TaU3 | 1.6% | 突变体植株 | 杜丽君,2018 | |
| TaGW2, TaGASR7 | TaU6 | 21.8%~33.4% | 突变体株系 | Liang et al., 2017, 2018 | |
| OsCDC48-T, OsEPSPS-T, OsLDMAR, OsDEP, OsALS-T | Ubi-1 | 2.6%~21.8% | 未获得突变体植株 | Lin et al, 2020 | |
| 玉米 | ZmIPK | ZmU3 | 13.1% | 未获得突变体植株 | Liang et al., 2014 | 
| ALS2 | ZmU6 | -- | 突变体植株 | Svitashev et al., 2015, 2016 | |
| Zmzb7 | ZmU3 | 19%~31% | 突变体植株 | Feng et al., 2016 | |
| ZmAgo18a, Zm-Ago18b, Zm-Ago a1, a4 | U6 | 70%~74% | 突变体植株 | Char et al., 2017 | |
| LG1 | ZmU6 | 51.5%~91.2% | 突变体植株 | Li et al., 2017 | |
| MS8 | U6 | 22.78% | 突变体植株 | Chen et al., 2018 | |
| 物种 | 靶基因 | 启动子 | 结果 | 文献及年份 | |
|---|---|---|---|---|---|
| 突变率 | 突变材料类型 | ||||
| 小麦 | TaGASR7、TaDEP1 | TaU6 | 26.0%~26.5% | 突变体植株 | Shan et al., 2013 | 
| TaMLO | TaU6 | -- | 突变体植株 | 王延鹏,等,2014 | |
| TaGASR7 | TaU6 | 1.5%~5.0% | 突变体植株 | Zhang et al., 2016 | |
| EDR1 | U3, U6 | -- | 突变体植株 | Zhang et al., 2017 | |
| TaMLO | TaU3 | 1.6% | 突变体植株 | 杜丽君,2018 | |
| TaGW2, TaGASR7 | TaU6 | 21.8%~33.4% | 突变体株系 | Liang et al., 2017, 2018 | |
| OsCDC48-T, OsEPSPS-T, OsLDMAR, OsDEP, OsALS-T | Ubi-1 | 2.6%~21.8% | 未获得突变体植株 | Lin et al, 2020 | |
| 玉米 | ZmIPK | ZmU3 | 13.1% | 未获得突变体植株 | Liang et al., 2014 | 
| ALS2 | ZmU6 | -- | 突变体植株 | Svitashev et al., 2015, 2016 | |
| Zmzb7 | ZmU3 | 19%~31% | 突变体植株 | Feng et al., 2016 | |
| ZmAgo18a, Zm-Ago18b, Zm-Ago a1, a4 | U6 | 70%~74% | 突变体植株 | Char et al., 2017 | |
| LG1 | ZmU6 | 51.5%~91.2% | 突变体植株 | Li et al., 2017 | |
| MS8 | U6 | 22.78% | 突变体植株 | Chen et al., 2018 | |
| 物种 | 靶基因 | 启动子 | 结果 | 文献及年份 | |
|---|---|---|---|---|---|
| 突变率 | 突变材料类型 | ||||
| 大豆 | GmFEI2, GmSHR | AtU6 | 1.3%~21.0% | 未获得突变体植株 | Cai et al., 2015 | 
| Gm06g14180,Gm08g02290,Gm12g37050 | AtU6, GmU6 | 3.2%~20.2% | 未获得突变体植株 | Sun et al., 2015 | |
| DD20, DD43 | GmU6 | 59%~76% | 未获得突变体植株 | Li et al., 2015 | |
| GmFT2a-SP1 GmFT2a-SP2 GmFT2a-SP2 | AtU6 | 48%,53%,37% | 突变体植株 | Cai et al, 2018 | |
| FAD2-1A | AtU3,AtU6 | -- | 纯合突变体植株 | 候智红等,2019 | |
| GmSPL3 | AtU3 | 28.6% | 纯合突变体植株 | 吴艳等,2019 | |
| GmSPL3 | GmU6 | -- | 纯合突变体植株 | 柏梦焱等,2019 | |
| 油菜 | BnCLV | AtU3,AtU6 | 0%~48.5% | 突变体植株 | Yang et al., 2017 | 
| BnWRKY11,BnWRKY70 | AtU3,AtU6 | 50%~54.5% | 突变体植株 | Sun et al., 2018 | |
| BnIND, BnALC | AtU3,AtU6 | 80.5%~76.6% | 纯合突变体植株 | Zhai et al., 2019 | |
| 花生 | FAD2 | AtU6 | 21%~44% | 未获得突变体植株 | Yuan et al., 2019 | 
| 物种 | 靶基因 | 启动子 | 结果 | 文献及年份 | |
|---|---|---|---|---|---|
| 突变率 | 突变材料类型 | ||||
| 大豆 | GmFEI2, GmSHR | AtU6 | 1.3%~21.0% | 未获得突变体植株 | Cai et al., 2015 | 
| Gm06g14180,Gm08g02290,Gm12g37050 | AtU6, GmU6 | 3.2%~20.2% | 未获得突变体植株 | Sun et al., 2015 | |
| DD20, DD43 | GmU6 | 59%~76% | 未获得突变体植株 | Li et al., 2015 | |
| GmFT2a-SP1 GmFT2a-SP2 GmFT2a-SP2 | AtU6 | 48%,53%,37% | 突变体植株 | Cai et al, 2018 | |
| FAD2-1A | AtU3,AtU6 | -- | 纯合突变体植株 | 候智红等,2019 | |
| GmSPL3 | AtU3 | 28.6% | 纯合突变体植株 | 吴艳等,2019 | |
| GmSPL3 | GmU6 | -- | 纯合突变体植株 | 柏梦焱等,2019 | |
| 油菜 | BnCLV | AtU3,AtU6 | 0%~48.5% | 突变体植株 | Yang et al., 2017 | 
| BnWRKY11,BnWRKY70 | AtU3,AtU6 | 50%~54.5% | 突变体植株 | Sun et al., 2018 | |
| BnIND, BnALC | AtU3,AtU6 | 80.5%~76.6% | 纯合突变体植株 | Zhai et al., 2019 | |
| 花生 | FAD2 | AtU6 | 21%~44% | 未获得突变体植株 | Yuan et al., 2019 | 
| [1] | Shino Y,Shinagawa H,Markino K,et al.Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product[J].Journal Bacteriology,1987,169(12):5429-5433. doi: 10.1128/jb.169.12.5429-5433.1987 URL | 
| [2] | Barrangou R,Fremaux C,Deveau H,et al.CRISPR provides acquired resistance against viruses in prokaryotes[J].Science,2007,315(5819):1709-1712. pmid: 17379808 | 
| [3] | Doudna J A,Charpentier E.The new frontier of genome engineering with CRISPR-Cas9[J].Science,2014,346(6213):1258096. doi: 10.1126/science.1258096 URL | 
| [4] | 霍晋彦,李姣,荆雅峰,等.CRISPR/Cas9系统在植物基因功能研究中的应用进展[J].植物生理学报,2019,55(3):241-246. | 
| [5] | Lin Q P,Zong Y,Xue C X,et al.Prime genome editing in rice and wheat[J].Nature Biotechnology,2020,38:582-585. doi: 10.1038/s41587-020-0455-x URL | 
| [6] | 欧阳乐军,李莉梅,马铭赛,等.CRISPR/Cas9技术发展及其应用进展[J].西北农林科技大学学报:自然科学版,2019,47(10):1-7. | 
| [7] | 沈兰,李健,付亚萍,等.利用CRISPR/Cas9系统定向改良水稻粒长和穗粒数性状[J].中国水稻科学,2017,31(3):223-231. | 
| [8] | 邵高能,谢黎虹,焦桂爱,等.利用CRISPR/Cas9技术编辑水稻香味基因Badh2[J].中国水稻科学,2017,31(2):216-222. | 
| [9] | Zhang Y,Bai Y,Wu G H,et al.Simultaneous modification of three homoeologs of Ta EDR1 by genome editing enhances powdery mildew resistance in wheat[J].The plant Journal,2017,91(4):714-724. doi: 10.1111/tpj.2017.91.issue-4 URL | 
| [10] | 徐鹏,王宏,涂燃冉,等.利用CRISPR/Cas9系统定向改良水稻稻瘟病抗性[J].中国水稻科学,2019,33(4):313-322. | 
| [11] | 柏梦焱,袁珏慧,孙嘉丰,等.基于CRISPR/Cas9基因编辑技术创制大豆gmnark超结瘤突变体[J].大豆科学,2019,38(4):525-532. | 
| [12] | Mojica F J,Diez V C,Soria E,et al.Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria[J].Molecular Microbiology,2000,36(1):244-246. pmid: 10760181 | 
| [13] | Lander E S.The heroes of CRISPR[J].Cell,2016,164(1/2):18-28. doi: 10.1016/j.cell.2015.12.041 URL | 
| [14] | Jansen R,Embden J D,Gaastra W,et al.Identification of genes that are associated with DNA repeats in prokaryotes[J].Molecular Microbiology,2002,43(6):1565-1575. pmid: 11952905 | 
| [15] | Jinek M,Chylinski K,Fonfara I,et al.A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J].Science,2012,337:816-821. doi: 10.1126/science.1225829 URL | 
| [16] | 郭晓强.CRISPR-Cas9技术发展史:25年的科学历程[J].自然杂志,2016,38(4):278-286. | 
| [17] | Cong L,Ran F,Cox D,et al.Multiplex genome engineering using CRISPR/Cas systems[J].Science,2013,339(6121):819-823. doi: 10.1126/science.1231143 pmid: 23287718 | 
| [18] | MaliI P,Yang L,Eavelt K M,et al.RNA-guided human genome engineering via Cas9[J].Science,2013,339(6121):823-826. doi: 10.1126/science.1232033 URL | 
| [19] | Stemberg S H,Redding S,Jinek M,et al.DNA interrogation by the CRISPR RNA-guided endonuclease Cas9[J].Nature,2014,507(7490):62-67. doi: 10.1038/nature13011 URL | 
| [20] | 景润春,卢洪.CRISPR/Cas9基因组定向编辑技术的发展与在作物遗传育种中的应用[J].中国农业科学,2016,49(7):1219-1229. | 
| [21] | Fu Y F,Sander J D,Reyon D,et al.Improving CRISPR-Cas nuclease specificity using truncated guide RNAs[J].Nature Biotechnology,2014,32:279-284. doi: 10.1038/nbt.2808 URL | 
| [22] | Doench J G,Fusi N,Sullender M,et al.Optimized sgRNA design to maximize activity minimize off-target effects of CRISPRCas9[J].Nature Biotechnology,2016,34:184-191. doi: 10.1038/nbt.3437 pmid: 26780180 | 
| [23] | Zhang D,Zhang H,Li T,et al.Perfectly matched 20-nucleotide guide RNA sequences enable robust genome editing using high-fidelity SpCas9 nucleases[J].Genome Biology,2017,18(1):191. doi: 10.1186/s13059-017-1325-9 URL | 
| [24] | Lee J K,Jeong E,Lee J,et al.Directed evolution of CRISPR-Cas9 to increase its specificity[J].Nature Communication,2018,9(1):3048. doi: 10.1038/s41467-018-05477-x URL | 
| [25] | Zong Y,Wang Y,Li C,et al.Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion[J].Nature Biotechnology,2017,35(5):438-440. doi: 10.1038/nbt.3811 URL | 
| [26] | 王影,李相敢,邱丽娟.CRISPR/Cas9基因组定点编辑中脱靶现象的研究进展[J].植物学报,2018,53(4):528-541. | 
| [27] | Tan Y Y,Athena H Y,Bao S Y,et al.Rationally engineered Staphylococcus aureus Cas9 nucleases with high genome-wide specificity[J].Proceedings of the National Academy of Sciences of the United States of America,2019,42:20969-20976. | 
| [28] | Walton R T,Christie K A,Whittaker M N,et al.Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants[J].Science,2020,368:290-296. doi: 10.1126/science.aba8853 URL | 
| [29] | Feng Z,Zhang B,Ding W,et al.Efficient genome editing in plants using a CRISPR-Cas system[J].Cell Research,2013,23(10):1229-1232. doi: 10.1038/cr.2013.114 URL | 
| [30] | Shan Q W,Wang Y P,Li J,et al.Targeted genome modification of crop plants using a CRISPR-Cas system[J].Nature Biotechnology,2013,31(8):686-688. doi: 10.1038/nbt.2650 URL | 
| [31] | 沈兰,华宇峰,付亚萍,等.利用CRISPR/Cas9多基因编辑系统在水稻中快速引入遗传多样性[J].中国科学:生命科学,2017,47(11):1186-1195. | 
| [32] | 周文甲.利用CRISPR/Cas9基因编辑技术创造早熟香味水稻[D].北京:中国科学院大学,2017. | 
| [33] | 吴明基,林艳,刘华清,等.利用CRISPR/Cas9技术创制水稻温敏核不育系[J].福建农业学报,2018,3(10):1011-1015. | 
| [34] | 冯璇,王新,韩悦,等.CRISPR/Cas9介导基因组编辑培育糯稻不育系WX209A[J].基因组学与应用生物学,2018,37(4):1589-1596. | 
| [35] | 王子璇,靳亚军,张泗举,等.水稻成花素家族OsDTH11基因的CRISPR/Cas9编辑突变体的创制[J].天津农业科学,2019,25(11):1-6. | 
| [36] | 范美英,梅法庭,朱义旺,等.利用CRISPR/Cas9技术创制糯稻新材料[J].福建农业学报,2019,34(5):503-508. | 
| [37] | 王延鹏,程曦,高彩霞,等.利用基因组编辑技术创制抗白粉病小麦[J].遗传,2014,36(8):848. | 
| [38] | Zhang Y,Liang Z,Zong Y,et al.Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA[J].Nature Communication,2016,7:12617. doi: 10.1038/ncomms12617 URL | 
| [39] | 杜丽君.小麦TaMOCl1基因的启动子分析及CRISPR/Cas9突变体的获得[D].泰安:山东农业大学,2018. | 
| [40] | Liang Z,Chen K L,Li T D,et al.Efficient DNA-freegenome editing of bread wheat using CRISPR-Cas9 ribonucleoprotein complexes[J].Nature Communication,2017,8:14261. doi: 10.1038/ncomms14261 URL | 
| [41] | Liang Z,Chen K L,Zhang Y,et al.Genome editing of bread wheat using biolistic delivery of CRISPR-Cas9 in vitro transcripts or ribonucleoproteins[J].Nature Protocols,2018,13(3):413-430. doi: 10.1038/nprot.2017.145 pmid: 29388938 | 
| [42] | Liang Z,Zhang K,Chen K,et al.Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system[J].Journal of Genetics and Genomics,2014,41(2):63-68. doi: 10.1016/j.jgg.2013.12.001 pmid: 24576457 | 
| [43] | Svitashev S,Schwartz C,Lenderts B,et al.Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes[J].Nature Communication,2016,7:13274. doi: 10.1038/ncomms13274 URL | 
| [44] | Svitashev S,Young J K,Schwartz C,et al.Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA[J].Plant Physiology,2015,169:931-945. doi: 10.1104/pp.15.00793 pmid: 26269544 | 
| [45] | Feng C,Yuan J,Wang R,et al.Efficient targeted genome modification in maize using CRISPR/Cas9 system[J].Journal of Genetics and Genomics,2016,43(1):37-43. doi: 10.1016/j.jgg.2015.10.002 URL | 
| [46] | Char S N,Neelakandan A K,Nahampun H,et al.An Agrobacterium-delivered CRISPR/Cas9 system for high-frequency targeted mutagenesis in maize[J].Plant Biotechnology J,2017,15(2):257-268. doi: 10.1111/pbi.2017.15.issue-2 URL | 
| [47] | Li C,Liu C,Qi X,et al.RNA-guided Cas9 as an in vivo desired-target matador in maize[J].Plant Biotechnology Journal,2017,15(12):1566-1576. doi: 10.1111/pbi.2017.15.issue-12 URL | 
| [48] | Chen R,Xu Q,Liu Y,et al.Generation of transgene-free maize male sterile lines using the CRISPR/Cas9 System[J].Frontiers in Plant Science,2018,9:1180. doi: 10.3389/fpls.2018.01180 URL | 
| [49] | Yuan M,Zhu J,Gong L M,et al.Mutagenesis of FAD2 genes in peanut with CRISPR/Cas9 based gene editing[J].BMC Biotechnology,2019,24:2-7. | 
| [50] | Li Z,Liu Z B,Xing A Q,et al.Cas9-guide RNA directed genome editing in soybean[J].Plant Physiology,2015,169(2):960-970. doi: 10.1104/pp.15.00783 URL | 
| [51] | Cai Y P,Chen L,Liu X J,et al.CRISPR/Cas9-mediated targeted mutagenesis of GmFTla delays flowering time in soya bean[J].Plant Biotechnology Journal,2018:1-10. | 
| [52] | 候智红,吴艳,程群,等.利用CRISPR/Cas9技术创制大豆高油酸突变系[J].作物学报,2019,45(6):839-847. | 
| [53] | 吴艳,侯智红,程群,等.大豆GmSPL3基因家族功能初探[J].大豆科学,2019,38(5):694-703. | 
| [54] | Yang Y,Zhu K,Li H L,et al.Precise editing of CLAVATA genes in Brassica napus L. regulates multilocular silique development[J].Plant Biotechnology Journal,2018,16(7):1322-1335. doi: 10.1111/pbi.12872 pmid: 29250878 | 
| [55] | Sun Q,Lin L,Liu D,et al.CRISPR/Cas9-Mediated Multiplex Genome Editing of the BnWRKY11 and BnWRKY70 Genes in Brassica napus L[J].International Joural Molecular Science,2018,19(9):2716. | 
| [56] | Zhai Y,Cai S,Hu L,et al.CRISPR/Cas9-mediated genome editing reveals differences in the contribution of INDEHISCENT homologues to pod shatter resistance in Brassica napus L[J].Theoretical and Applied Genetics,2019,132(7):2111-2123. doi: 10.1007/s00122-019-03341-0 URL | 
| [1] | 陈和敏, 肖文芳, 陈和明, 吕复兵, 朱根发, 李宗艳, 李佐. 基于CiteSpace的兰花保鲜研究进展及可视化分析[J]. 中国农学通报, 2023, 39(1): 151-164. | 
| [2] | 李星星, 韩芳, 周雪, 苏乐平, 袁宏安. 富硒谷子研究进展[J]. 中国农学通报, 2022, 38(7): 1-6. | 
| [3] | 刘鹏, 吴巧花, 舒惠理, 周莉荫, 王小东. 油茶对胁迫因子的响应机制研究进展[J]. 中国农学通报, 2022, 38(7): 24-28. | 
| [4] | 颜越, 金荷仙, 王丽娴. 国内外社区花园健康效益研究进展[J]. 中国农学通报, 2022, 38(34): 68-75. | 
| [5] | 杨武广, 王君, 温凯, 仇景涛. 中国稻鳖共作技术研究进展与展望[J]. 中国农学通报, 2022, 38(31): 12-16. | 
| [6] | 王晴, 方文生, 李园, 王秋霞, 颜冬冬, 曹坳程. 杀线虫剂新品种及作用机制研究进展[J]. 中国农学通报, 2022, 38(30): 100-107. | 
| [7] | 孙彬, 王芳, 杨雨春, 王君, 陆志民, 董广志, 史婉玲. 水曲柳研究进展[J]. 中国农学通报, 2022, 38(29): 74-79. | 
| [8] | 权莹, 张晓娟, 赵辉, 孙晓敏, 马秀奇. CRISPER/Cas9系统在植物基因组定点修饰及作物遗传育种中的应用研究进展[J]. 中国农学通报, 2022, 38(26): 9-14. | 
| [9] | 麻磊, 黄晓君, Ganbat Dashzebegd, Mungunkhuyag Ariunaad, Tsagaantsooj Nanzadd, Altanchimeg Dorjsuren, 包刚, 佟斯琴, 包玉海, Enkhnasan Davaadorj. 不同遥感传感器监测森林虫害研究进展与展望[J]. 中国农学通报, 2022, 38(26): 91-99. | 
| [10] | 厉雅华, 张向前, 安祺, 武迪, 刘战勇, 孙峰, 张德健, 高敏, 张国英, 邢俊. 耕地地力评价方法及实践应用研究进展[J]. 中国农学通报, 2022, 38(15): 60-68. | 
| [11] | 彭婵, 张新叶, 刘宗坤, 马林江, 陈慧玲. 石斛属植物SSR分子标记的研究进展[J]. 中国农学通报, 2022, 38(13): 36-40. | 
| [12] | 吴文彦, 程智超, 李梦莎, 隋心, 曾宪楠. 基于Web of Science的根瘤菌发展研究[J]. 中国农学通报, 2021, 37(9): 109-117. | 
| [13] | 崔国梅, 许方方, 李顺峰, 魏书信, 刘丽娜, 王安建. 香菇精深加工及生物活性研究进展[J]. 中国农学通报, 2021, 37(7): 132-137. | 
| [14] | 范馨月, 张华, 赵继业, 杜子沫, 丛日晨. 绒毛白蜡耐盐碱响应机制的研究进展[J]. 中国农学通报, 2021, 37(28): 28-34. | 
| [15] | 张旭, 胡宝贵. 中国农业节水灌溉技术应用研究进展[J]. 中国农学通报, 2021, 37(26): 153-158. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||