[1] |
戴华鑫, 梁太波, 李彩斌, 等. 烟秆生物炭还田对植烟黄棕壤养分、细菌群落结构与功能的影响[J]. 南方农业学报, 2023, 54(2):476-487.
|
[2] |
JU M C, RAO P H, YAN L L, et al. Synergistic adsorption and degradation of sulfamethazine by tobacco stalk-derived activated biochar: Preparation, mechanism insight and application[J]. Journal of environmental chemical engineering, 2023, 11:110265.
|
[3] |
LI X, WU D, LIU X, et al. A global dataset of biochar application efects on crop yield, soil properties, and greenhouse gas emissions[J]. Scientific data, 2024, 11:57.
|
[4] |
陈贵云, 王惠芳, 王铎, 等. 烟秆生物质炭基肥施用对烤烟产质量的影响[J]. 中国农学通报, 2024, 40(1):12-19.
doi: 10.11924/j.issn.1000-6850.casb2023-0011
|
[5] |
ZAKARIA D S, ROZI S K M, HALIN H N A, et al. New porous amine-functionalized biochar-based desiccated coconut waste as efficient CO2 adsorbentss[J]. Environmental science and pollution research, 2024, 31:16309-16327.
|
[6] |
马丹妮, 盛建东, 张坤, 等. 生物炭和有机肥配施对土壤养分影响的研究进展[J]. 中国农学通报, 2024, 40(2):42-51.
doi: 10.11924/j.issn.1000-6850.casb2023-0062
|
[7] |
陈燕, 贾孟, 孔明, 等. 烟秆生物质炭对连作植烟土壤养分及烟叶产质量的影响[J]. 西南农业学报, 2023, 36(9):2019-2025.
|
[8] |
陈宇琳, 童晨晓, 吴凤英, 等. 烟秆炭基肥对烤烟生长和品质的影响[J]. 南方农业学报, 2022, 53(6):1625-1633.
|
[9] |
YU X N, ZHOU H J, YE X F, et al. From hazardous agriculture waste to hazardous metal scavenger: Tobacco stalk biochar-mediated sequestration of Cd leads to enhanced tobacco productivity[J]. Journal of hazardous materials, 2021, 413:125303.
|
[10] |
YANG X, LU K P, MCGROUTHER K, et al. Bioavailability of Cd and Zn in soils treated with biochars derived from tobacco stalk and dead pigs[J]. Journal of soils and sediments, 2017, 17:751-762.
|
[11] |
谭丹, 王衡, 梅闯, 等. 高低硅秸秆生物炭的表征及对Cd2+的吸附特性与机理[J]. 农业环境科学学报, 2023, 42(2):339-351.
|
[12] |
ZHANG J Q, LI C B, LI G T, et al. Effects of biochar on heavy metal bioavailability and uptake by tobacco (Nicotiana tabacum) in two soils[J]. Agriculture, ecosystems and environment, 2021, 317:107453.
|
[13] |
黄玉芬, 魏岚, 李翔, 等. 不同裂解温度稻壳生物炭对阿特拉津的吸附行为及机制[J]. 环境科学研究, 2020, 33(8):1919-1928.
|
[14] |
鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
|
[15] |
URE A M, QUEVAUVILLER P H, MUNTAU H, et al. Speciation of heavy metals in soils and sediments. An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the commission of the European communities[J]. International journal of environmental analytical chemistry, 1993, 51:035-051.
|
[16] |
中华人民共各国国家卫生和计划生育委员会,国家食品药品监督管理总局. GB 5009.268—2016,食品安全国家标准食品中多元素的测定[S]. 北京: 中国标准出版社,2016-12-23.
|
[17] |
田志君, 何付兵, 姜昱聪, 等. 金矿开采活动区土壤-农作物系统重金属污染特征及风险评价[J]. 环境科学, 2024, 45(12):7218-7225.
|
[18] |
生态环境部, 国家市场监督管理总局. GB 15618—2018,土壤环境质量农用地土壤污染风险管控标准[S]. 北京: 中国标准出版社,2018-06-22.
|
[19] |
CHAVEZ E, HE Z L, STOFFELLA P J, et al. Chemical speciation of cadmium: An approach to evaluate plant-available cadmium in Ecuadorian soils under cacao production[J]. Chemosphere, 2016, 150:57-62.
doi: S0045-6535(16)30164-3
pmid: 26891357
|
[20] |
GU J L, ZOU G Y, SU S M, et al. Effects of pH on available cadmium in calcareous soils and culture substrates[J]. Eurasian soil science, 2022, 55(12):1714-1719.
|
[21] |
YANG Z H, XIA H, GUO Z Y, et al. Development and application of machine learning models for prediction of soil available cadmium based on soil properties and climate features[J]. Environmental pollution, 2024, 355:124148.
|
[22] |
周宽, 刘熙杨, 钟艺天, 等. 4种不同原料生物炭对镉污染土壤的钝化效果与稳定性比较[J]. 水土保持学报, 2023, 37(4):351-369.
|
[23] |
SERRANO M F, LOPEZ J E, HENAO N, et al. Phosphorus-loaded biochar-assisted phytoremediation to immobilize cadmium, chromium, and lead in soils[J]. ACS Omega, 2024, 9:3574-3587.
doi: 10.1021/acsomega.3c07433
pmid: 38284006
|
[24] |
AHMED M J, HAMEED B H. Recent progress on tobacco wastes-derived adsorbents for the remediation of aquatic pollutants: A review[J]. Environmental research, 2024, 247:118203.
|
[25] |
许华强, 王林, 孙约兵, 等. 不同钝化剂对土壤镉有效性与生物可给性的对比影响研究[J/OL]. 农业环境科学学报,1-14[2025-01-07]. http://kns.cnki.net/kcms/detail/12.1347.S.20240521.1640.012.html.
|
[26] |
WANG X, WANG T, HUANG Y Z, et al. Effect of biochars on the immobilization and form of Cadmium (Cd) in simulated Cd deposition of iron rich soils[J]. Ecotoxicology and environmental safety, 2024, 272:116045.
|
[27] |
肖乃川, 王子芳, 杨文娜, 等. 改性酒糟生物炭对紫色土壤镉形态及水稻吸收镉的影响[J]. 环境科学, 2024, 45(5):3027-3036.
|
[28] |
刘建萍, 龙莹, 李晓红. 生物质炭施用量对大豆农艺性状和营养物质含量的影响[J]. 应用生态学报, 2022, 33(4):1069-1073.
doi: 10.13287/j.1001-9332.202204.005
|
[29] |
KHAN S, IRSHAD S, MEHMOOD K, et al. Biochar production and characteristics, its impacts on soil health, crop production, and yield enhancement: a review[J]. Plants, 2024, 13:166.
|
[30] |
陈颖, 刘玉学, 陈重军, 等. 生物炭对土壤有机碳矿化的激发效应及其机理研究进展[J]. 应用生态学报, 2018, 29(1):314-320.
doi: 10.13287/j.1001-9332.201801.024
|
[31] |
黄宝源, 邓兰生, 邓丽芳, 等. 物炭调理酸化土壤的作用机制[J]. 土壤与作物, 2024, 13(1):74-84.
|
[32] |
刘赛男. 生物炭影响土壤磷素、钾素有效性的微生态机制[D]. 沈阳: 沈阳农业大学, 2016.
|
[33] |
ADHIKARI S, MOON E, TIMMS W. Identifying biochar production variables to maximise exchangeable cations and increase nutrient availability in soils[J]. Journal of cleaner production, 2024, 446(25):141454.
|
[34] |
ZHAO Z R, LIU L, SUN Y, et al. Combined microbe-plant remediation of cadmium in saline-alkali soil assisted by fungal mycelium-derived biochar[J]. Environmental research, 2024, 240:117424.
|
[35] |
叶扬, 向贵琴, 郭晓雯, 等. 生物炭对咸水滴灌棉田土壤细菌群落的调控效应[J]. 中国农学通报, 2024, 40(6):91-100.
doi: 10.11924/j.issn.1000-6850.casb2023-0236
|
[36] |
邢光辉, 典瑞丽, 陈光辉, 等. 施用生物炭对烤烟根系生长和经济性状的影响[J]. 作物研究, 2016, 30(5):549-554.
|
[37] |
李彩斌, 蒋寿安, 刘青丽, 等. 生物炭不同施用量对烤烟养分与土壤理化性质的影响[J]. 贵州农业科学, 2023, 51(6):33-39.
|
[38] |
WU X, YANG F J, ZHANG J L, et al. Biochar’s role in improving pakchoi quality and microbial community structure in rhizosphere soil[J]. Peerj, 2024, 12:e16733.
|
[39] |
庞发虎, 吴雪姣, 孔雪菲, 等. 重金属钝化剂阻控生菜Cd吸收的功能稳定性和适用性[J]. 环境科学, 2021, 42(5):2502-2511.
|
[40] |
XU W J, XIE X C, LI Q, et al. Biochar co-pyrolyzed from peanut shells and maize straw improved soil biochemical properties, rice yield, and reduced cadmium mobilization and accumulation by rice: Biogeochemical investigations[J]. Journal of hazardous materials, 2024, 466(15):133486.
|